Bài tập cung liên kết inh gia ri luong giac năm 2024

Tài liệu gồm 73 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, bao gồm lý thuyết và bài tập chủ đề giá trị lượng giác và công thức lượng giác môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống, có đáp án và lời giải chi tiết.

Bài tập cung liên kết inh gia ri luong giac năm 2024

Chủ đề 1: GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC LƯỢNG GIÁC.

  1. TÓM TẮT LÝ THUYẾT. 1. GÓC LƯỢNG GIÁC.
  2. Góc lượng giác.
  3. Số đo góc lượng giác.
  4. Hệ thức Chasles. 2. ĐƠN VỊ ĐO GÓC VÀ ĐỘ DÀI CUNG TRÒN.
  5. Đơn vị đô góc và cung tròn.
  6. Độ dài cung tròn. 3. GIÁ TRỊ LƯỢNG GIÁC CỦA GÓC LƯỢNG GIÁC.
  7. Đường tròn lượng giác.
  8. Các giá trị lượng giác của góc lượng giác.
  9. Giá trị lượng giác của các góc đặc biệt.
  10. Sử dụng máy tính cầm tay để đổi số đo góc và tìm giá trị lượng giác của góc. 4. QUAN HỆ GIỮA CÁC GIÁ TRỊ LƯỢNG GIÁC.
  11. Các công thức lượng giác cơ bản.
  12. Giá trị lượng giác của các góc có liên quan đặc biệt. II. BÀI TẬP MINH HỌA. III. BÀI TẬP TRẮC NGHIỆM. IV. LỜI GIẢI CHI TIẾT.

Chủ đề 2: CÔNG THỨC LƯỢNG GIÁC.

  1. TÓM TẮT LÝ THUYẾT. 1. CÔNG THỨC CỘNG. 2. CÔNG THỨC NHÂN ĐÔI. 3. CÔNG THỨC BIẾN ĐỔI TÍCH THÀNH TỔNG. 4. CÔNG THỨC BIẾN ĐỔI TỔNG THÀNH TÍCH. 5. MỘT SỐ KẾT QUẢ CẦN LƯU Ý. II. BÀI TẬP MINH HỌA. III. BÀI TẬP TRẮC NGHIỆM. IV. LỜI GIẢI CHI TIẾT.
  • Hàm Số Lượng Giác Và Phương Trình Lượng Giác

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

Ta có các công thức: \(\tan \alpha = \dfrac{{\sin \alpha }}{{\cos \alpha }};\) \(\cot \alpha = \dfrac{{\cos \alpha }}{{\sin \alpha }};\) \(\tan \alpha .\cot \alpha = 1;\) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)

Vậy chỉ có đáp án A sai.

Chọn A.

Đáp án - Lời giải

Câu hỏi 2 :

Khẳng định nào dưới đây là đúng?

  • A \(\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right)\)
  • B \(\sin {\alpha ^2} + \cos {\alpha ^2} = 1\)
  • C \(\tan \alpha = \tan \left( {{{90}^0} - \alpha } \right)\)
  • D \(\cot \alpha = \cot \left( {{{90}^0} - \alpha } \right)\)

Đáp án: A

Phương pháp giải:

Áp dụng các công thức lượng giác cơ bản.

Lời giải chi tiết:

+) Đáp án A: đúng

+) Đáp án B: sai, công thức đúng: \({\sin ^2}\alpha + co{s^2}\alpha = 1\)

+) Đáp án C: sai, công thức đúng: \(\tan \alpha = \cot \left( {{{90}^0} - \alpha } \right)\)

+) Đáp án D: sai, công thức đúng: \(\cot \alpha = \tan \left( {{{90}^0} - \alpha } \right)\)

Chọn A

Đáp án - Lời giải

Câu hỏi 3 :

Không dùng MTBT hoặc bảng số, hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần.

Câu 1:

\(\cos {\rm{ }}{44^o},{\rm{ sin }}{50^o},{\rm{ sin }}{70^o},{\rm{ cos }}{55^o}\)

  • A \(\cos {44^0} < \sin {50^0} < \sin {70^0} < \cos {55^0}\)
  • B \(\cos{44^0} < \cos {55^0} < \sin {50^0} < \sin {70^0}\)
  • C \(\cos {55^0} < \cos {44^0} < \sin {50^0} < \sin {70^0}\)
  • D \(\cos {55^0} < \cos {44^0} < \sin {70^0} < \sin {50^0}\)

Đáp án: C

Phương pháp giải:

Áp dụng \(0 < \alpha < \beta < {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha < \sin \beta \\cos\alpha > cos\beta \end{array} \right..\)

Ta có: \(\alpha + \beta = {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha = \cos \beta \\\cos \alpha = \sin \beta \end{array} \right.\)

Lời giải chi tiết:

\(\cos {\rm{ }}{44^o},{\rm{ sin }}{50^o},{\rm{ sin }}{70^o},{\rm{ cos }}{55^o}\)

Ta có: \(\left\{ \begin{array}{l}\cos {\rm{ }}{44^0} = \cos {\rm{ }}\left( {{{90}^0} - {{46}^0}} \right) = {\rm{sin 4}}{{\rm{6}}^0}\\\cos {\rm{ 5}}{{\rm{5}}^0} = \cos {\rm{ }}\left( {{{90}^0} - {{35}^0}} \right) = {\rm{sin 3}}{{\rm{5}}^0}\end{array} \right.\)

Vì \({35^0} < {46^0} < {50^0} < {70^0}\)\( \Rightarrow {\rm{sin 3}}{5^o} < \sin {\rm{ }}{46^o} < {\rm{sin }}{50^o} < {\rm{sin }}{70^o}\)

\( \Rightarrow {\rm{cos }}{55^o} < \cos {\rm{ }}{44^o} < {\rm{sin }}{50^o} < {\rm{sin }}{70^o}.\)

Chọn C.

Đáp án - Lời giải

Câu 2:

\({\rm{sin }}{49^o},{\rm{ cos }}{15^o},{\rm{ sin }}{65^o},{\rm{ cos }}{50^o},{\rm{ }}\cos {\rm{ }}{42^o}\)

  • A \(\sin {49^0} < \sin {65^0} < \cos {15^0} < \cos {50^0} < \cos {42^0}\)
  • B \(\cos {50^0} < \cos {42^0} < \sin {49^0} < \sin {65^0} < \cos {15^0}\)
  • C \(\cos {50^0} < \cos {42^0} < \cos {15^0} < \sin {49^0} < \sin {65^0}\)
  • D \(\cos {15^0} < \cos {42^0} < \cos {50^0} < \sin {49^0} < \sin {65^0}\)

Đáp án: B

Phương pháp giải:

Áp dụng \(0 < \alpha < \beta < {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha < \sin \beta \\cos\alpha > cos\beta \end{array} \right..\)

Ta có: \(\alpha + \beta = {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha = \cos \beta \\\cos \alpha = \sin \beta \end{array} \right.\)

Lời giải chi tiết:

\({\rm{sin }}{49^o},{\rm{ cos }}{15^o},{\rm{ sin }}{65^o},{\rm{ cos }}{50^o},{\rm{ }}\cos {\rm{ }}{42^o}\)

Ta có: \(\left\{ \begin{array}{l}sin{\rm{ }}{49^0} = \cos {\rm{ }}\left( {{{90}^0} - {{41}^0}} \right) = {\rm{sin 4}}{{\rm{1}}^0}\\sin{\rm{ 6}}{{\rm{5}}^0} = \cos {\rm{ }}\left( {{{90}^0} - {{25}^0}} \right) = {\rm{sin 2}}{{\rm{5}}^0}\end{array} \right.\)

Vì \({15^0} < {25^0} < {41^0} < {42^0} < {50^0}\)\( \Rightarrow \cos {\rm{ }}{50^o} < \cos {\rm{ }}{42^o}{\rm{ < }}\cos {\rm{ 4}}{{\rm{1}}^o}{\rm{ < }}\cos {\rm{ 2}}{{\rm{5}}^o} < \cos {15^0}\)

\( \Rightarrow {\rm{cos }}{50^0} < \cos {\rm{ }}{42^0} < {\rm{sin }}{49^0} < {\rm{sin }}{65^0}{\rm{ < cos }}{15^0}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 4 :

Tính các tỷ số lượng giác còn lại của \(\alpha \) với \(0 < \alpha < {90^0}\) biết:

Câu 1:

\(\sin \alpha = \frac{2}{3}\)

  • A \(\cos \alpha = \pm \frac{{\sqrt 5 }}{3}\,\,;\,\,\,\tan \alpha = \pm \frac{{2\sqrt 5 }}{5}\,\,;\,\,\,\cot \alpha = \pm \frac{{\sqrt 5 }}{2}\)
  • B \(\cos \alpha = - \frac{{\sqrt 5 }}{3}\,\,;\,\,\,\tan \alpha = - \frac{{2\sqrt 5 }}{5}\,\,;\,\,\,\cot \alpha = - \frac{{\sqrt 5 }}{2}\)
  • C \(\cos \alpha = \frac{{\sqrt 5 }}{3}\,\,;\,\,\,\tan \alpha = \frac{{2\sqrt 5 }}{5}\,\,;\,\,\,\cot \alpha = \frac{{\sqrt 5 }}{2}\)
  • D \(\cos \alpha = \pm \frac{{\sqrt 5 }}{3}\,\,;\,\,\,\tan \alpha = \frac{{2\sqrt 5 }}{5}\,\,;\,\,\,\cot \alpha = \frac{{\sqrt 5 }}{2}\)

Đáp án: C

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)

Lời giải chi tiết:

Ta có: \(0 < \alpha < {90^0}\) \( \Rightarrow \left\{ \begin{array}{l}\sin \alpha > 0\\\cos \alpha > 0\\\tan \alpha > 0\\\cot \alpha > 0\end{array} \right..\)

\(\sin \alpha = \frac{2}{3}\)

*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{2}{3}} \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\cos ^2}\alpha = 1 - \frac{4}{9} = \frac{5}{9}\)\( \Rightarrow \cos \alpha = \frac{{\sqrt 5 }}{3}\)

*\(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{2}{3}:\frac{{\sqrt 5 }}{3} = \frac{{2\sqrt 5 }}{5}\)

*\(\cot \alpha = \frac{1}{{\tan \alpha }} = 1:\frac{{2\sqrt 5 }}{5} = \frac{{\sqrt 5 }}{2}\)

Chọn C.

Đáp án - Lời giải

Câu 2:

\(\tan \alpha = \frac{4}{3}\)

  • A \(\sin \alpha = \pm \frac{4}{5}\,\,;\,\,\cos \alpha = \pm \frac{3}{5}\,\,;\,\,\cot \alpha = \frac{3}{4}\)
  • B \(\sin \alpha = \frac{4}{5}\,\,;\,\,\cos \alpha = \frac{3}{5}\,\,;\,\,\cot \alpha = \frac{3}{4}\)
  • C \(\sin \alpha = \pm \frac{3}{5}\,\,;\,\,\cos \alpha = \pm \frac{4}{5}\,\,;\,\,\cot \alpha = \frac{3}{4}\)
  • D \(\sin \alpha = \frac{3}{5}\,\,;\,\,\cos \alpha = \frac{4}{5}\,\,;\,\,\cot \alpha = \frac{3}{4}\)

Đáp án: B

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)

Lời giải chi tiết:

Ta có: \(0 < \alpha < {90^0}\) \( \Rightarrow \left\{ \begin{array}{l}\sin \alpha > 0\\\cos \alpha > 0\\\tan \alpha > 0\\\cot \alpha > 0\end{array} \right..\)

\(\tan \alpha = \frac{4}{3}\)

* \(\tan \alpha .\cot \alpha = 1\)\( \Leftrightarrow \cot \alpha = 1:tan\alpha = 1:\frac{4}{3} = \frac{3}{4}\)

* \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{4}{3}} \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{25}}{9}\)\( \Rightarrow {\cos ^2}\alpha = \frac{9}{{25}}\)\( \Rightarrow \cos \alpha = \frac{3}{5}\)

*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{3}{5}} \right)^2} + {\sin ^2}\alpha = 1\)\( \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\)\( \Rightarrow \sin \alpha = \frac{4}{5}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 5 :

Tính các tỷ số lượng giác còn lại của \(\alpha \) biết:

Câu 1:

\(\sin \alpha = \frac{5}{{13}}\)

  • A \(\cos \alpha = \frac{{12}}{{13}}\,\,;\,\,\tan \alpha = \frac{5}{{12}}\,\,;\,\,\cot \alpha = \frac{{12}}{5}\)
  • B \(\cos \alpha = \pm \frac{{12}}{{13}}\,\,;\,\,\tan \alpha = \pm \frac{5}{{12}}\,\,;\,\,\cot \alpha = \pm \frac{{12}}{5}\)
  • C \(\cos \alpha = \pm \frac{{12}}{{13}}\,\,;\,\,\tan \alpha = \pm \frac{{12}}{5}\,\,;\,\,\cot \alpha = \pm \frac{5}{{12}}\)
  • D \(\cos \alpha = \frac{{12}}{{13}}\,\,;\,\,\tan \alpha = \frac{{12}}{5}\,\,;\,\,\cot \alpha = \frac{5}{{12}}\)

Đáp án: B

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right.\)

Lời giải chi tiết:

\(\sin \alpha = \frac{5}{{13}}\)

Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Leftrightarrow {\left( {\frac{5}{{13}}} \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\cos ^2}\alpha = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\)\( \Rightarrow \cos \alpha = \pm \frac{{12}}{{13}}\)

Lại có: \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\) \( \Leftrightarrow {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} - 1 = \frac{{169}}{{144}} - 1 = \frac{{25}}{{144}}\) \( \Rightarrow \tan \alpha = \pm \frac{5}{{12}}\)

\( \Rightarrow \cot \alpha = \frac{1}{{\tan \alpha }} = \pm \frac{{12}}{5}\)

Chọn B.

Đáp án - Lời giải

Câu 2:

\(\tan \alpha = \frac{{12}}{{35}}\)

  • A \(\cot \alpha = \frac{{35}}{{12}}\,\,;\,\,\cos \alpha = \frac{{35}}{{37}}\,\,;\,\,\sin \alpha = \frac{{12}}{{37}}\)
  • B \(\cot \alpha = \frac{{35}}{{12}}\,\,;\,\,\sin \alpha = \pm \frac{{35}}{{37}}\,\,;\,\,\cos \alpha = \pm \frac{{12}}{{37}}\)
  • C \(\cot \alpha = \frac{{35}}{{12}}\,\,;\,\,\cos \alpha = \pm \frac{{35}}{{37}}\,\,;\,\,\sin \alpha = \pm \frac{{12}}{{37}}\)
  • D \(\cot \alpha = \frac{{35}}{{12}}\,\,;\,\,\sin \alpha = \frac{{35}}{{37}}\,\,;\,\,\cos \alpha = \frac{{12}}{{37}}\)

Đáp án: C

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right.\)

Lời giải chi tiết:

\(\tan \alpha = \frac{{12}}{{35}}\)

Ta có: \(\tan \alpha .\cot \alpha = 1\)\( \Leftrightarrow \cot \alpha = \frac{1}{{\tan \alpha }} = 1:\frac{{12}}{{35}} = \frac{{35}}{{12}}\)

Lại có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{{12}}{{35}}} \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{1369}}{{1225}}\)\( \Rightarrow {\cos ^2}\alpha = \frac{{1225}}{{1369}}\)\( \Rightarrow \cos \alpha = \pm \frac{{35}}{{37}}\)

\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{{35}}{{37}}} \right)^2} + {\sin ^2}\alpha = 1\)\( \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{{1225}}{{1369}} = \frac{{144}}{{1369}}\)\( \Rightarrow \sin \alpha = \pm \frac{{12}}{{37}}\)

Chọn C.

Đáp án - Lời giải

Câu hỏi 6 :

Tính các tỷ số lượng giác còn lại của \(\alpha \) biết:

Câu 1:

\({\rm{cos}}\alpha = \frac{3}{4}\)

  • A \(\sin \alpha = \pm \frac{4}{5}\,\,;\,\,\tan \alpha = \pm \frac{{16}}{{15}}\,\,;\,\,\cot \alpha = \pm \frac{{15}}{{16}}\)
  • B \(\sin \alpha = \frac{4}{5}\,\,;\,\,\tan \alpha = \frac{{16}}{{15}}\,\,;\,\,\cot \alpha = \frac{{15}}{{16}}\)
  • C \(\sin \alpha = \frac{4}{5}\,\,;\,\,\tan \alpha = \frac{{15}}{{16}}\,\,;\,\,\cot \alpha = \frac{{16}}{{15}}\)
  • D \(\sin \alpha = \pm \frac{4}{5}\,\,;\,\,\tan \alpha = \pm \frac{{15}}{{16}}\,\,;\,\,\cot \alpha = \pm \frac{{16}}{{15}}\)

Đáp án: A

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\cot ^2}\alpha = \frac{1}{{si{n^2}\alpha }}\end{array} \right..\)

Lời giải chi tiết:

\({\rm{cos}}\alpha = \frac{3}{4}\)

*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\sin ^2}\alpha + {\left( {\frac{3}{4}} \right)^2} = 1\)\( \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\)\( \Rightarrow \sin \alpha = \pm \frac{4}{5}\)

*\(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \pm \frac{4}{5}:\frac{3}{4} = \pm \frac{{16}}{{15}}\)

*\(\cot \alpha = \frac{1}{{\tan \alpha }} = 1:\left( { \pm \frac{{16}}{{15}}} \right) = \pm \frac{{15}}{{16}}\)

Chọn A.

Đáp án - Lời giải

Câu 2:

\(cot\alpha = \frac{8}{{15}}\)

  • A \(\tan \alpha = \frac{{15}}{8}\,\,;\,\,\sin \alpha = \frac{{15}}{{17}}\,\,;\,\,\cos \alpha = \frac{8}{{17}}\)
  • B \(\tan \alpha = \pm \frac{{15}}{8}\,\,;\,\,\cos \alpha = \pm \frac{{15}}{{17}}\,\,;\,\,\sin \alpha = \pm \frac{8}{{17}}\)
  • C \(\tan \alpha = \frac{{15}}{8}\,\,;\,\,\cos \alpha = \frac{{15}}{{17}}\,\,;\,\,\sin \alpha = \frac{8}{{17}}\)
  • D \(\tan \alpha = \frac{{15}}{8}\,\,;\,\,\sin \alpha = \pm \frac{{15}}{{17}}\,\,;\,\,\cos \alpha = \pm \frac{8}{{17}}\)

Đáp án: D

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\cot ^2}\alpha = \frac{1}{{si{n^2}\alpha }}\end{array} \right..\)

Lời giải chi tiết:

\(cot\alpha = \frac{8}{{15}}\)

* \(\tan \alpha .\cot \alpha = 1 \Leftrightarrow tan\alpha = \frac{1}{{\cot \alpha }} = \frac{1}{{\frac{8}{{15}}}} = \frac{{15}}{8}\)

* \(1 + {\cot ^2}\alpha = \frac{1}{{si{n^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{8}{{15}}} \right)^2} = \frac{1}{{si{n^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{si{n^2}\alpha }} = \frac{{289}}{{225}}\)\( \Rightarrow si{n^2}\alpha = \frac{{225}}{{289}}\)\( \Rightarrow sin\alpha = \pm \frac{{15}}{{17}}\)

*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{{15}}{{17}}} \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\cos ^2}\alpha = 1 - \frac{{225}}{{289}} = \frac{{64}}{{289}}\)\( \Rightarrow \cos \alpha = \pm \frac{8}{{17}}\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 7 :

Giá trị của biểu thức \(P = {\cos ^2}{20^0} + {\cos ^2}{40^0} + {\cos ^2}{50^0} + {\cos ^2}{70^0}\) bằng

  • A \(0\)
  • B \(1\)
  • C \(2\)
  • D \(3\)

Đáp án: C

Phương pháp giải:

+) Sử dụng công thức: \(\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right);\;\;{\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}P = {\cos ^2}{20^0} + {\cos ^2}{40^0} + {\cos ^2}{50^0} + {\cos ^2}{70^0}\\ = {\cos ^2}{20^0} + {\cos ^2}{40^0} + {\sin ^2}{40^0} + {\sin ^2}{20^0}\\ = \left( {{{\cos }^2}{{20}^0} + {{\sin }^2}{{20}^0}} \right) + \left( {{{\cos }^2}{{40}^0} + {{\sin }^2}{{40}^0}} \right)\\ = 1 + 1 = 2.\end{array}\)

Chọn C.

Đáp án - Lời giải

Câu hỏi 8 :

Tính giá trị của các biểu thức sau:

Câu 1:

\(A = {\sin ^2}{15^0} + {\sin ^2}{25^0} + {\sin ^2}{35^0} + {\sin ^2}{45^0} + {\sin ^2}{55^0} + {\sin ^2}{65^0} + {\sin ^2}{75^0}\)

  • A \(A=0\)
  • B \(A = \frac{7}{2}\)
  • C \(A = \frac-{7}{2}\)
  • D \(A = \frac{5}{2}\)

Đáp án: B

Phương pháp giải:

Sử dụng các công thức đặc biệt: \(\left\{ \begin{array}{l}\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right)\\\tan \alpha = \cot \left( {{{90}^0} - \alpha } \right)\\{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\end{array} \right..\)

Lời giải chi tiết:

\(\,\,A = {\sin ^2}{15^0} + {\sin ^2}{25^0} + {\sin ^2}{35^0} + {\sin ^2}{45^0} + {\sin ^2}55 + {\sin ^2}{65^0} + {\sin ^2}{75^0}\)

Ta có:

\(\begin{array}{l}A = {\sin ^2}{15^0} + {\sin ^2}{25^0} + {\sin ^2}{35^0} + {\sin ^2}{45^0} + {\sin ^2}55 + {\sin ^2}{65^0} + {\sin ^2}{75^0}\\\,\,\,\,\, = {\sin ^2}{15^0} + {\sin ^2}{25^0} + {\sin ^2}{35^0} + {\sin ^2}{45^0} + {\cos ^2}{35^0} + {\cos ^2}{25^0} + {\cos ^2}{15^0}\\\,\,\,\,\, = \left( {{{\sin }^2}{{15}^0} + {{\cos }^2}{{15}^0}} \right) + \left( {{{\sin }^2}{{25}^0} + {{\cos }^2}25} \right) + \left( {{{\sin }^2}{{35}^0} + {{\cos }^2}{{35}^0}} \right) + {\sin ^2}{45^0}\\\,\,\,\, = 1 + 1 + 1 + {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = 3 + \frac{1}{2} = \frac{7}{2}.\end{array}\)

Đáp án - Lời giải

Câu 2:

\(B = \tan {10^0}.\tan {80^0} - \tan {20^0}.\tan {70^0}.\)

  • A \(B=0\)
  • B \(B=1\)
  • C \(B = \frac{7}{2}\)
  • D \(B =- \frac{7}{2}\)

Đáp án: A

Phương pháp giải:

Sử dụng các công thức đặc biệt: \(\left\{ \begin{array}{l}\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right)\\\tan \alpha = \cot \left( {{{90}^0} - \alpha } \right)\\{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\end{array} \right..\)

Lời giải chi tiết:

\(\,\,B = \tan {10^0}.\tan {80^0} - \tan {20^0}.\tan {70^0}.\)

Ta có:

\(\begin{array}{l}\,B = \tan {10^0}.\tan {80^0} - \tan {20^0}.\tan {70^0}\\\,\,\,\,\, = \tan {10^0}.cot{10^0} - \tan {20^0}.\cot {20^0}\\\,\,\,\,\, = 1 - 1 = 0.\end{array}\)

Đáp án - Lời giải

Câu hỏi 9 :

Biết \({0^0} < \alpha < {90^0}\). Giá trị bủa biểu thức \(\left[ {\sin \alpha + 3\,\cos \left( {{{90}^0} - \alpha } \right)} \right]:\left[ {\sin \alpha - 2\cos \left( {{{90}^0} - \alpha } \right)} \right]\) bằng:

  • A \( - 4\)
  • B \(4\)
  • C \(\frac{{ - 3}}{2}\)
  • D \(\frac{3}{2}\).

Đáp án: A

Phương pháp giải:

Áp dụng tính chất: \(\sin \alpha = \cos \left( {{{90}^0} - \alpha } \right);\,\,\,\,\cos \alpha = \sin \left( {{{90}^0} - \alpha } \right).\)

Lời giải chi tiết:

\(\begin{array}{l}\left[ {\sin \alpha + 3\,\cos \left( {{{90}^0} - \alpha } \right)} \right]:\left[ {\sin \alpha - 2\cos \left( {{{90}^0} - \alpha } \right)} \right] = \left( {\sin \alpha + 3\sin \alpha } \right):\left( {\sin \alpha - 2\sin \alpha } \right)\\ = \left( {4\sin \alpha } \right):\left( { - \sin \alpha } \right) = - 4.\end{array}\)

Chọn A

Đáp án - Lời giải

Câu hỏi 10 :

Tính số đo góc nhọn \(\alpha \) biết \(10{\sin ^2}\alpha + 6{\cos ^2}\alpha = 8\).

  • A \(\alpha = {30^0}.\)
  • B \(\alpha = {45^0}.\)
  • C \(\alpha = {60^0}.\)
  • D \(\alpha = {120^0}.\)

Đáp án: B

Phương pháp giải:

- Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\,\,\forall \alpha \).

- Tính \(\sin \alpha \), từ đo suy ra số đo góc \(\alpha \).

Lời giải chi tiết:

Ta có: \(10{\sin ^2}\alpha + 6{\cos ^2}\alpha = 8\)

\(\begin{array}{l} \Leftrightarrow 4{\sin ^2}\alpha + 6\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) = 8\\ \Leftrightarrow 4{\sin ^2}\alpha + 6 = 8\\ \Leftrightarrow {\sin ^2}\alpha = \dfrac{1}{2} \Leftrightarrow \sin \alpha = \pm \dfrac{{\sqrt 2 }}{2}\end{array}\)

\(Do\,\,\alpha < {90^0} \Rightarrow \sin \alpha > 0 \Leftrightarrow \sin \alpha = \dfrac{{\sqrt 2 }}{2}.\)

Vậy \(\alpha = {45^0}.\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 11 :

Hãy đơn giản các biểu thức:

Câu 1:

\(1 - {\sin ^2}x\)

  • A \({\cos ^2}x\)
  • B \({\tan ^2}x\)
  • C \({\cot ^2}x\)
  • D \( - {\cos ^2}x\)

Đáp án: A

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\end{array} \right..\)

Lời giải chi tiết:

\(1 - {\sin ^2}x = {\cos ^2}x\)

Chọn A.

Đáp án - Lời giải

Câu 2:

\(\sin x - \sin x.{\rm{co}}{{\rm{s}}^2}x\)

  • A \({\tan ^3}x\)
  • B \({\cos ^3}x\)
  • C \({\cot ^3}x\)
  • D \({\sin ^3}x\)

Đáp án: D

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\end{array} \right..\)

Lời giải chi tiết:

\(\sin x - \sin x.{\rm{co}}{{\rm{s}}^2}x\)\( = \sin x\left( {1 - {\rm{co}}{{\rm{s}}^2}x} \right)\)\( = \sin x.{\sin ^2}x = {\sin ^3}x\)

Chọn D.

Đáp án - Lời giải

Câu 3:

\({\tan ^2}x - {\sin ^2}x.{\tan ^2}x\)

  • A \({\cos ^2}x\)
  • B \({\tan ^2}x\)
  • C \({\cot ^2}x\)
  • D \({\sin ^2}x\)

Đáp án: D

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\end{array} \right..\)

Lời giải chi tiết:

\({\tan ^2}x - {\sin ^2}x.{\tan ^2}x\)\( = {\tan ^2}x\left( {1 - {{\sin }^2}x} \right)\)\( = \frac{{{{\sin }^2}x}}{{co{s^2}x}}.co{s^2}x = {\sin ^2}x\)

Chọn D.

Đáp án - Lời giải

Câu hỏi 12 :

Cho biểu thức \(A = \frac{{1 - 2\sin \alpha \cos \alpha }}{{{{\sin }^2}\alpha - {{\cos }^2}\alpha }}\) với \(\alpha \ne {45^0}\)

  1. Chứng minh rằng \(A = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }}\)
  1. Tính giá trị của A biết \(\tan \alpha = \frac{1}{3}\).
  • A \({\rm{b)}}\,\,A = \frac{1}{2}\)
  • B \({\rm{b)}}\,\,A = - \frac{1}{2}\)
  • C \({\rm{b)}}\,\,A = \frac{3}{2}\)
  • D \({\rm{b)}}\,\,A = - \frac{3}{2}\)

Đáp án: B

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\end{array} \right..\)

Sử dụng hằng đẳng thức.

Lời giải chi tiết:

  1. Chứng minh rằng \(A = \frac{{\sin \alpha - c{\rm{os}}\alpha }}{{\sin \alpha + c{\rm{os}}\alpha }}\)

\(\begin{array}{l}A = \frac{{1 - 2\sin \alpha \cos \alpha }}{{{{\sin }^2}\alpha - c{\rm{o}}{{\rm{s}}^2}\alpha }} = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha - 2\sin \alpha \cos \alpha }}{{\left( {\sin \alpha - \cos \alpha } \right)\left( {\sin \alpha + \cos \alpha } \right)}}\\ = \frac{{{{\left( {\sin \alpha - \cos \alpha } \right)}^2}}}{{\left( {\sin \alpha - \cos \alpha } \right)\left( {\sin \alpha + \cos \alpha } \right)}}\\ = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }}\,\,\,\,\,\left( {dpcm} \right).\end{array}\)

  1. Tính giá trị của A biết \(\tan \alpha = \frac{1}{3}\).

Theo ý a ta có: \(A = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }} = \frac{{\tan \alpha - 1}}{{\tan \alpha + 1}}\)

Thay \(\tan \alpha = \frac{1}{3}\) vào A ta được: \(A = \frac{{\tan \alpha - 1}}{{\tan \alpha + 1}} = \frac{{\frac{1}{3} - 1}}{{\frac{1}{3} + 1}} = - \frac{1}{2}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 13 :

Tính giá trị của các biểu thức:

Câu 1:

\(A = \frac{{\cos {{41}^0}}}{{\sin {{49}^0}}} + \tan {28^0}.\tan {62^0}\)

  • A \(A = 1\)
  • B \(A = 2\)
  • C \(A = 0\)
  • D \(A = \frac{1}{2}\)

Đáp án: B

Phương pháp giải:

Sử dụng các công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1;\)\(\,\tan \alpha .cot\alpha = 1.\)

Cho \(\angle B + \angle C = {90^0}.\) Khi đó ta có: \(\left\{ \begin{array}{l}\sin B = \cos C\\\cos B = \sin C\end{array} \right..\)

Lời giải chi tiết:

\(A = \frac{{\cos {{41}^0}}}{{\sin {{49}^0}}} + \tan {28^0}.\tan {62^0}\)

\(A = \frac{{\cos {{41}^0}}}{{\sin {{49}^0}}} + \tan {28^0}.\tan {62^0}\)\( = \frac{{\sin {{49}^0}}}{{\sin {{49}^0}}} + \tan {28^0}.cot{28^0}\)\( = 1 + 1 = 2.\)

Chọn B.

Đáp án - Lời giải

Câu 2:

\(B = {\cos ^2}{10^0} + {\cos ^2}{20^0} + {\cos ^2}{70^0} + {\cos ^2}{80^0}\)

  • A \(B = 1\)
  • B \(B = 2\)
  • C \(B = 0\)
  • D \(B = \frac{1}{2}\)

Đáp án: B

Phương pháp giải:

Sử dụng các công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1;\)\(\,\tan \alpha .cot\alpha = 1.\)

Cho \(\angle B + \angle C = {90^0}.\) Khi đó ta có: \(\left\{ \begin{array}{l}\sin B = \cos C\\\cos B = \sin C\end{array} \right..\)

Lời giải chi tiết:

\(B = {\cos ^2}{10^0} + {\cos ^2}{20^0} + {\cos ^2}{70^0} + {\cos ^2}{80^0}\)

\(\begin{array}{l}B = {\cos ^2}{10^0} + {\cos ^2}{20^0} + {\cos ^2}{70^0} + {\cos ^2}{80^0}\\ = {\cos ^2}{10^0} + {\cos ^2}{20^0} + si{n^2}{20^0} + si{n^2}{10^0}\\ = \left( {{{\cos }^2}{{20}^0} + si{n^2}{{20}^0}} \right) + \left( {{{\cos }^2}{{10}^0} + si{n^2}{{10}^0}} \right)\\ = 1 + 1 = 2.\end{array}\)

Chọn B.

Đáp án - Lời giải

Câu hỏi 14 :

Tính giá trị của các biểu thức:

Câu 1:

\(C = {(3\sin \alpha + 4\cos \alpha )^2} + {\left( {4\sin \alpha - 3\cos \alpha } \right)^2}\)

  • A \(C = 5\)
  • B \(C = 9\)
  • C \(C = 25\)
  • D \(C = 16\)

Đáp án: D

Phương pháp giải:

Sử dụng công thức tỉ số lượng giác của góc nhọn.

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)

Lời giải chi tiết:

\(C = {(3\sin \alpha + 4\cos \alpha )^2} + {\left( {4\sin \alpha - 3\cos \alpha } \right)^2}\)

\(\begin{array}{l}C = {\left( {3\sin \alpha + 4\cos \alpha } \right)^2} + {\left( {4\sin \alpha - 3\cos \alpha } \right)^2}\\ = 9{\sin ^2}\alpha + 24\sin \alpha \cos \alpha + 16{\cos ^2}\alpha + 16{\sin ^2}\alpha - 24\sin \alpha \cos \alpha + 9{\cos ^2}\alpha \\ = 25{\sin ^2}\alpha + 25{\cos ^2}\alpha \\ = 25\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) = 25.\end{array}\)

Chọn D.

Đáp án - Lời giải

Câu 2:

Cho biết \(\tan \alpha = \frac{2}{3}\). Tính giá trị biểu thức: \(M = \frac{{{{\sin }^3}\alpha + 3{{\cos }^3}\alpha }}{{27{{\sin }^3}\alpha - 25{{\cos }^3}\alpha }}\)

  • A \(M = - \frac{1}{3}\)
  • B \(M = - 1\)
  • C \(M = - \frac{{89}}{{459}}\)
  • D \(M = - \frac{{72}}{{459}}\)

Đáp án: C

Phương pháp giải:

Sử dụng công thức tỉ số lượng giác của góc nhọn.

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right..\)

Lời giải chi tiết:

\(M = \frac{{{{\sin }^3}\alpha + 3{{\cos }^3}\alpha }}{{27{{\sin }^3}\alpha - 25{{\cos }^3}\alpha }} = \frac{{\frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} + 3}}{{\frac{{27{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} - 25}} = \frac{{{{\tan }^3}\alpha + 3}}{{27{{\tan }^3}\alpha - 25}}\)

Thay \(\tan \alpha = \frac{2}{3}\) vào biểu thức \(M\) ta có:

\(M = \frac{{{{\tan }^3}\alpha + 3}}{{27{{\tan }^3}\alpha - 25}} = \frac{{{{\left( {\frac{2}{3}} \right)}^3} + 3}}{{27{{\left( {\frac{2}{3}} \right)}^3} - 25}} = - \frac{{89}}{{459}}.\)

Chọn C.

Đáp án - Lời giải

Câu hỏi 15 :

Tính giá trị biểu thức:

Câu 1:

\(M = {\sin ^2}{42^o} + {\sin ^2}{43^o} + {\sin ^2}{44^o} + {\sin ^2}{45^o} + {\sin ^2}{46^o} + {\sin ^2}{47^o} + {\sin ^2}{48^o}\)

  • A \(M = 3\)
  • B \(M = \frac{5}{2}\)
  • C \(M = \frac{3}{2}\)
  • D \(M = \frac{7}{2}\)

Đáp án: D

Phương pháp giải:

Sử dụng tính chất hai góc phụ nhau: \(\alpha + \beta = {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha = \cos \beta \\\cos \alpha = \sin \beta \end{array} \right.\)

Sử dụng công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)

Giá trị lượng giác của một số góc đặc biệt.

Lời giải chi tiết:

\(M = {\sin ^2}{42^o} + {\sin ^2}{43^o} + {\sin ^2}{44^o} + {\sin ^2}{45^o} + {\sin ^2}{46^o} + {\sin ^2}{47^o} + {\sin ^2}{48^o}\)

\(\begin{array}{l}M = {\sin ^2}{42^o} + {\sin ^2}{43^o} + {\sin ^2}{44^o} + {\sin ^2}{45^o} + {\sin ^2}{46^o} + {\sin ^2}{47^o} + {\sin ^2}{48^o}\\ = {\sin ^2}{42^o} + {\sin ^2}{43^o} + {\sin ^2}{44^o} + {\sin ^2}{45^o} + {\cos ^2}{44^o} + {\cos ^2}{43^o} + {\cos ^2}{42^o}\\ = \left( {{\rm{si}}{{\rm{n}}^2}{{42}^o} + {\rm{co}}{{\rm{s}}^2}{{42}^o}} \right) + \left( {{{\sin }^2}{{43}^o}{\rm{ + co}}{{\rm{s}}^2}{{43}^o}} \right) + \left( {{\rm{ }}{{\sin }^2}{{44}^o} + {\rm{co}}{{\rm{s}}^2}{{44}^o}} \right) + {\sin ^2}{45^o}\\ = 1 + 1 + 1 + \frac{1}{2} = \frac{7}{2}\end{array}\)

Chọn D.

Đáp án - Lời giải

Câu 2:

\(N = {\cos ^2}{15^o} - {\cos ^2}{25^o} + {\cos ^2}{35^o} - {\cos ^2}{45^o} + {\cos ^2}{55^o} - {\cos ^2}{65^o} + {\cos ^2}{75^o}\)

  • A \(N = \frac{1}{2}\)
  • B \(N = 1\)
  • C \(N = - 1\)
  • D \(N = - \frac{1}{2}\)

Đáp án: A

Phương pháp giải:

Sử dụng tính chất hai góc phụ nhau: \(\alpha + \beta = {90^0} \Rightarrow \left\{ \begin{array}{l}\sin \alpha = \cos \beta \\\cos \alpha = \sin \beta \end{array} \right.\)

Sử dụng công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)

Giá trị lượng giác của một số góc đặc biệt.

Lời giải chi tiết:

\(N = {\cos ^2}{15^o} - {\cos ^2}{25^o} + {\cos ^2}{35^o} - {\cos ^2}{45^o} + {\cos ^2}{55^o} - {\cos ^2}{65^o} + {\cos ^2}{75^o}\)

\(\begin{array}{l}N = {\cos ^2}{15^o} - {\cos ^2}{25^o} + {\cos ^2}{35^o} - {\cos ^2}{45^o} + {\cos ^2}{55^o} - {\cos ^2}{65^o} + {\cos ^2}{75^o}\\ = {\cos ^2}{15^o} - {\cos ^2}{25^o} + {\cos ^2}{35^o} - {\cos ^2}{45^o} + {\sin ^2}{35^o} - {\sin ^2}{25^o} + {\sin ^2}{15^0}\\ = \left( {{{\cos }^2}{{15}^o} + si{n^2}{{15}^0}} \right) - \left( {{{\cos }^2}{{25}^o} + si{n^2}{{25}^0}} \right) + \left( {{{\cos }^2}{{35}^o} + si{n^2}{{35}^0}} \right) - {\cos ^2}{45^o}\\ = 1 - 1 + 1 - \frac{1}{2} = \frac{1}{2}\end{array}\)

Chọn A.

Đáp án - Lời giải

Câu hỏi 17 :

Bài tập cung liên kết inh gia ri luong giac năm 2024

  • A \(\cos \alpha = \frac{{\sqrt 5 }}{3};\,\,\tan \alpha = - \frac{2}{3};\,\,\cot \alpha = - \frac{{\sqrt 5 }}{2}\)
  • B \(\cos \alpha = \frac{{\sqrt 5 }}{3};\,\,\tan \alpha = \frac{{2\sqrt 5 }}{5};\,\,\cot \alpha = \frac{{\sqrt 5 }}{2}\)
  • C \(\cos \alpha = \frac{{\sqrt 2 }}{3};\,\,\tan \alpha = \sqrt 2 ;\,\,\cot \alpha = \frac{1}{2}\)
  • D \(\cos \alpha = \frac{1}{3};\,\,\tan \alpha = 2;\,\,\cot \alpha = \frac{1}{2}\)

Đáp án: B

Lời giải chi tiết:

Bài tập cung liên kết inh gia ri luong giac năm 2024

Đáp án - Lời giải

Câu hỏi 19 :

  1. \(1 + {\rm{ }}{\tan ^2}x{\rm{ }} = \frac{1}{{{{\cos }^2}x}}\) b) \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\)
  1. \({\cos ^4}x-{\rm{ si}}{{\rm{n}}^4}x = 2{\cos ^2}x{\rm{ }} - 1\) d) \({\sin ^6}x + {\cos ^6}x{\rm{ }} = {\rm{ }}1 - {\rm{ }}3{\sin ^2}x.{\cos ^2}x\)

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\\\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\end{array} \right..\)

Sử dụng hằng đẳng thức.

Lời giải chi tiết:

  1. \(1 + {\rm{ }}{\tan ^2}x{\rm{ }} = \frac{1}{{{{\cos }^2}x}}\)

\(VT = 1 + {\rm{ }}{\tan ^2}x\)\( = 1 + \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}\)\( = \frac{{{{\cos }^2}x + {{\sin }^2}x}}{{{{\cos }^2}x}}\)\( = \frac{1}{{{{\cos }^2}x}} = VP\)(đpcm)

  1. \(1 + {\cot ^2}x{\rm{ }} = \frac{1}{{{{\sin }^2}x}}\)

\(VT = 1 + {\cot ^2}x{\rm{ }} = 1 + \frac{{{{\cos }^2}x}}{{{{\sin }^2}x}}\)\( = \frac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x}} = \frac{1}{{{{\sin }^2}x}}\) (đpcm)

  1. \({\cos ^4}x--{\sin ^4}x = 2{\cos ^2}x{\rm{ }} - 1\)

\(\begin{array}{l}{\cos ^4}x--{\sin ^4}x = \left( {{{\cos }^2}x--{{\sin }^2}x} \right)\left( {{{\cos }^2}x{\rm{ + }}{{\sin }^2}x} \right)\\ = {\cos ^2}x--{\sin ^2}x = {\cos ^2}x - \left( {1 - {{\cos }^2}x{\rm{ }}} \right)\\ = 2{\cos ^2}x{\rm{ }} - 1\,\,\,\,\left( {dpcm} \right)\end{array}\)

  1. \({\sin ^6}x + {\cos ^6}x{\rm{ }} = 1 - 3{\sin ^2}x.{\cos ^2}x\)

\(\begin{array}{l}{\sin ^6}x + {\cos ^6}x = \left( {{{\sin }^2}x + {{\cos }^2}x} \right)\left( {{{\sin }^4}x - {{\sin }^2}x.{{\cos }^2}x + {{\cos }^4}x} \right)\\ = \left( {{{\sin }^4}x + {{\cos }^4}x} \right) - {\sin ^2}x.{\cos ^2}x\\ = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x.{\cos ^2}x - {\sin ^2}x.{\cos ^2}x\\ = 1 - 3{\sin ^2}x.{\cos ^2}x\,\,\,\,\left( {dpcm} \right)\end{array}\)

Đáp án - Lời giải

Câu hỏi 20 :

Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha \).

  1. \({\left( {\cos \alpha - \sin \alpha } \right)^2} + {\left( {\cos \alpha + \sin \alpha } \right)^2}\)
  1. \(\frac{{{{(c{\rm{os}}\alpha - \sin \alpha )}^2} - {{(c{\rm{os}}\alpha + \sin \alpha )}^2}}}{{c{\rm{os}}\alpha .\sin \alpha }}\)

Phương pháp giải:

Sử dụng công thức lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)

Sử dụng hằng đẳng thức.

Lời giải chi tiết:

  1. \({\left( {\cos \alpha - {\rm{sin}}\alpha } \right)^2} + {\left( {\cos \alpha - {\rm{sin}}\alpha } \right)^2}\)

\(\begin{array}{l}{\left( {\cos \alpha - {\rm{sin}}\alpha } \right)^2} + {\left( {\cos \alpha + {\rm{sin}}\alpha } \right)^2}\\ = {\cos ^2}\alpha - 2{\rm{sin}}\alpha .\cos \alpha + {\rm{si}}{{\rm{n}}^2}\alpha + {\cos ^2}\alpha + 2{\rm{sin}}\alpha \cos \alpha + {\rm{si}}{{\rm{n}}^2}\alpha \\ = 2{\rm{si}}{{\rm{n}}^2}\alpha + 2{\cos ^2}\alpha = 2\left( {{\rm{si}}{{\rm{n}}^2}\alpha + {{\cos }^2}\alpha } \right) = 2.1 = 2.\end{array}\)

Vậy giá trị của các biểu thức trên không phụ thuộc vào giá trị của góc nhọn \(\alpha \).

  1. \(\frac{{{{\left( {\cos \alpha - \sin \alpha } \right)}^2} - {{\left( {\cos \alpha + \sin \alpha } \right)}^2}}}{{\cos \alpha .\sin \alpha }}\)

\(\begin{array}{l}\frac{{{{\left( {\cos \alpha - \sin \alpha } \right)}^2} - {{\left( {\cos \alpha + \sin \alpha } \right)}^2}}}{{\cos \alpha .\sin \alpha }}\\ = \frac{{{{\cos }^2}\alpha - 2\sin \alpha .\cos \alpha + {{\sin }^2}\alpha - {{\cos }^2}\alpha - 2\sin \alpha \cos \alpha - {{\sin }^2}\alpha }}{{\cos \alpha .\sin \alpha }}\\ = \frac{{ - 4\sin \alpha \cos \alpha }}{{\cos \alpha .\sin \alpha }} = - 4.\end{array}\)