Cách giải các bài toán giới hạn lớp 11 năm 2024

Tài liệu gồm 154 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề giới hạn và liên tục, giúp học sinh lớp 11 tham khảo khi học sinh trình Đại số và Giải tích 11 chương 4.

BÀI 1. GIỚI HẠN CỦA DÃY SỐ.

  1. TÓM TẮT LÝ THUYẾT.
  2. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Tính giới hạn L = lim P[n]/Q[n] với P[n], Q[n] là các đa thức. Dạng 2. Tính giới hạn dạng L = lim P[n]/Q[n] với P[n], Q[n] là các hàm mũ an. Dạng 3. Tính giới hạn của dãy số chứa căn thức.
  3. BÀI TẬP RÈN LUYỆN.

BÀI 2. GIỚI HẠN CỦA HÀM SỐ.

  1. TÓM TẮT LÝ THUYẾT.
  2. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức là các đa thức. Dạng 2. Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức có chứa căn thức. Dạng 3. Giới hạn của hàm số khi x tiến đến vô cực. Dạng 4. Giới hạn một bên x tiến đến x0+ hoặc x tiến đến x0-. Dạng 5. Giới hạn của hàm số lượng giác.
  3. BÀI TẬP RÈN LUYỆN.

BÀI 3. HÀM SỐ LIÊN TỤC.

  1. TÓM TẮT LÝ THUYẾT.
  2. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Xét tính liên tục của hàm số tại một điểm. Dạng 2. Xét tính liên tục của hàm số trên tập xác định. Dạng 3. Chứng minh phương trình có nghiệm.
  3. BÀI TẬP RÈN LUYỆN.

BÀI 4. ÔN TẬP CHƯƠNG IV.

  • Giới Hạn - Hàm Số Liên Tục

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

Bài viết trên đã giới thiệu cho các em phần lý thuyết cơ bản và các dạng bài về giới hạn của dãy số. Đây là một phần kiến thức khó và quan trọng trong chương trình toán 11 nên để đạt được kết quả tốt nhất các em học cần phải nắm rõ lý thuyết và rèn luyện thêm các dạng bài tập. Các em học sinh có thể truy cập nền tảng Vuihoc.vn và đăng ký tài khoản để luyện đề ngay hôm nay nhé!

Bài viết Giới hạn của hàm số và cách giải các dạng bài tập sẽ giúp học sinh nắm vững lý thuyết, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán 11.

1. Lý thuyết

  1. Giới hạn của hàm số tại một điểm:

* Giới hạn hữu hạn: Cho khoảng K chứa điểm x0 . Ta nói rằng hàm số f[x] xác định trên K [có thể trừ điểm x0] có giới hạn là L khi x dần tới x0 nếu với dãy số [xn] bất kì, xn ∈ K \ {x0} và xn → x0, ta có: f[xn] → L.

Kí hiệu: hay f[x] → L khi x → x0.

Nhận xét: Nếu f[x] là hàm số sơ cấp xác định tại x0 thì

* Giới hạn ra vô cực:

Hàm số y = f[x] có giới hạn dần tới dương vô cực khi x dần tới x0 nếu với mọi dãy số [xn]: xn → x0 thì f[xn] → +∞.

Kí hiệu:

Hàm số y = f[x] có giới hạn dần tới âm vô cực khi x dần tới x0 nếu với mọi dãy số [xn]: xn → x0 thì f[xn] → −∞.

Kí hiệu:

  1. Giới hạn của hàm số tại vô cực

* Giới hạn ra hữu hạn:

- Ta nói hàm số y = f[x] xác định trên [a;+∞] có giới hạn là L khi x → +∞ nếu với mọi dãy số [xn]: xn > a và xn → +∞ thì f[xn] → L.

Kí hiệu: .

- Ta nói hàm số y = f[x] xác định trên [−∞;b] có giới hạn là L khi x → −∞ nếu với mọi dãy số [xn]: xn < b và xn → −∞ thì f[xn] → L.

Kí hiệu:

* Giới hạn ra vô cực:

- Ta nói hàm số y = f[x] xác định trên [a;+∞] có giới hạn dần tới dương vô cùng [hoặc âm vô cùng] khi x → +∞ nếu với mọi dãy số [xn]: xn > a và xn → +∞ thì f[xn] → +∞ [hoặc f[xn] → −∞].

Kí hiệu:

- Ta nói hàm số y = f[x] xác định trên [−∞; b] có giới hạn là dần tới dương vô cùng [hoặc âm vô cùng] khi x → −∞ nếu với mọi dãy số [xn]: xn < b và xn → −∞ thì f[xn] → +∞ [hoặc f[xn] → −∞].

Kí hiệu:

  1. Các giới hạn đặc biệt:

với c là hằng số

với k nguyên dương;

với k lẻ, với k chẵn

  1. Một vài định lý về giới hạn hữu hạn

* Nếu thì:

; nếu c là một hằng số thì

* Nếu f[x] ≥ 0, thì

Chú ý:

- Các định lý về giới hạn hữu hạn của hàm số vẫn đúng khi thay x → x0 bởi x → +∞ hoặc x → −∞.

- Định lí trên ta chỉ áp dụng cho những hàm số có giới hạn là hữu hạn. Ta không áp dụng cho các giới hạn dần về vô cực.

* Nguyên lí kẹp

Cho ba hàm số f[x], g[x], h[x] xác định trên K chứa điểm x0 [có thể các hàm đó không xác định tại x0]. Nếu thì

  1. Quy tắc về giới hạn vô cực

Quy tắc tìm giới hạn của tích f[x]g[x]

L > 0

+∞

+∞

−∞

−∞

L < 0

+∞

−∞

−∞

+∞

Quy tắc tìm giới hạn của thương

Dấu của g[x]

L

±∞

Tùy ý

0

L > 0

0

+

+∞

0

-

−∞

L < 0

0

+

−∞

0

-

+∞

  1. Giới hạn một bên

* Giới hạn hữu hạn

- Định nghĩa 1: Giả sử hàm số f xác định trên khoảng [x0;b],[x0 ∈ ]. Ta nói rằng hàm số f có giới hạn bên phải là số thực L khi dần đến x0 [hoặc tại điểm x0] nếu với mọi dãy số bất kì [xn] những số thuộc khoảng [x0; b] mà lim xn = x0 ta đều có lim f[xn] = L.

Khi đó ta viết: hoặc f[x] → L khi x → x0+.

- Định nghĩa 2: Giả sử hàm số f xác định trên khoảng [a;x0], [x0 ∈ ]. Ta nói rằng hàm số có giới hạn bên trái là số thực L khi x dần đến x0 [hoặc tại điểm x0] nếu với mọi dãy bất kì [xn] những số thuộc khoảng [a; x0] mà lim xn = x0 ta đều có lim f[xn] = L.

Khi đó ta viết: hoặc f[x] → L khi x → x0−.

- Nhận xét:

Các định lí về giới hạn của hàm số vẫn đúng khi thay x → x0 bởi x → x0− hoặc x → x0+.

* Giới hạn vô cực

- Các định nghĩa , ,và được phát biểu tương tự như định nghĩa 1 và định nghĩa 2.

- Nhận xét: Các định lí về giới hạn của hàm số vẫn đúng nếu thay L bởi +∞ hoặc −∞

2. Các dạng bài tập

Dạng 1: Giới hạn tại một điểm

Phương pháp giải:

- Nếu f[x] là hàm số sơ cấp xác định tại x0 thì

- Áp dụng quy tắc về giới hạn tới vô cực:

Dấu của g[x]

L

±∞

Tùy ý

0

L > 0

0

+

+∞

0

-

−∞

L < 0

0

+

−∞

0

-

+∞

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

Lời giải

Ví dụ 2: Tính các giới hạn sau:

Lời giải

  1. Vì nên

Dạng 2: Giới hạn tại vô cực

Phương pháp giải:

- Rút lũy thừa có số mũ lớn nhất

- Áp dụng quy tắc giới hạn tới vô cực

L > 0

+∞

+∞

−∞

−∞

L < 0

+∞

−∞

−∞

+∞

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

Lời giải

Ví dụ 2: Tính các giới hạn sau:

Lời giải

Dạng 3: Sử dụng nguyên lý kẹp

Nguyên lí kẹp

Cho ba hàm số f[x], g[x], h[x] xác định trên K chứa điểm x0 [có thể các hàm đó không xác định tại x0]. Nếu thì

Phương pháp giải:

Xét tính bị chặn của hàm số f[x] bởi hai hàm số g[x] và h[x] sao cho

Chú ý tính bị chặn của hàm số lượng giác:

−1 ≤ sin x ≤ 1

−1 ≤ cos x ≤ 1

Ví dụ minh họa:

Ví dụ 1: Tính giới hạn của hàm số:

Lời giải

  1. Ta có:

  1. Ta có:

Ví dụ 2: Tính giới hạn của hàm số:

Lời giải

Ta có:

Dạng 4: Giới hạn dạng vô định

Nhận biết dạng vô định : Tính trong đó f[x0] = g[x0] = 0.

Phương pháp giải:

Để khử dạng vô định này ta phân tích f[x] và g[x] sao cho xuất hiện nhân tử chung là [x – x0]

Định lí: Nếu đa thức f[x] có nghiệm x = x0 thì ta có: f[x] = [x – x0]f1[x].

* Nếu f[x] và g[x] là các đa thức thì ta phân tích f[x] = [x – x0]f1[x] và g[x] = [x – x0]g1[x].

Khi đó , nếu giới hạn này có dạng thì ta tiếp tục quá trình như trên.

Chú ý: Nếu tam thức bậc hai ax2 + bx + c có hai nghiệm x1 ; x2 thì ta luôn có sự phân tích: ax2 + bx + c = a[x – x1] [x – x2]

* Nếu f[x] và g[x] là các hàm chứa căn thức thì ta nhân lượng liên hợp để chuyển về các đa thức, rồi phân tích các đa thức như trên.

Các lượng liên hợp:

* Nếu f[x] và g[x] là các hàm chứa căn thức không đồng bậc ta sử dụng phương pháp tách, chẳng hạn:

Nếu thì ta phân tích:

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

Lời giải

Ví dụ 2: Tính các giới hạn sau:

Lời giải

Dạng 5: Giới hạn dạng vô định

Nhận biết dạng vô định

Phương pháp giải:

- Chia tử và mẫu cho xn với n là số mũ cao nhất của biến ở mẫu [Hoặc phân tích thành tích chứa nhân tử xn rồi giản ước].

- Nếu u[x] hoặc v[x] có chứa biến x trong dấu căn thì đưa xk ra ngoài dấu căn [Với k là mũ cao nhất của biến x trong dấu căn], sau đó chia tử và mẫu cho lũy thừa cao nhất của x.

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

Lời giải

Ví dụ 2: Tính các giới hạn sau:

Lời giải

Dạng 6: Giới hạn dạng vô định ∞ − ∞ và 0.∞

Phương pháp giải:

- Nếu biểu thức chứa biến số dưới dấu căn thì nhân và chia với biểu thức liên hợp

- Nếu biểu thức chứa nhiều phân thức thì quy đồng mẫu và đưa về cùng một biểu thức

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

Lời giải

a]

Ví dụ 2: Tính các giới hạn sau:

Lời giải

Dạng 7: Tính giới hạn một bên

Phương pháp giải:

Sử dụng quy tắc tính giới hạn tới vô cực

Dấu của g[x]

L

±∞

Tùy ý

0

L > 0

0

+

+∞

0

-

−∞

L < 0

0

+

−∞

0

-

+∞

Ví dụ minh họa:

Ví dụ 1: Tính các giới hạn sau:

Lời giải

Ví dụ 2: Cho hàm số . Tính:

Lời giải

Dạng 8: Tìm tham số m để hàm số có giới hạn tại 1 điểm cho trước

Phương pháp giải:

Sử dụng nhận xét:

- Tính giới hạn

- Để hàm số có giới hạn tại x = x0 cho trước thì . Tìm m.

Khi đó với m vừa tìm được, hàm số có giới hạn tại x = x0 cho trước và giới hạn đó bằng L =

Ví dụ minh họa:

Ví dụ 1: Cho hàm số . Với giá trị nào của a thì hàm số đã cho có giới hạn tại điểm x = 2?

Lời giải

Ta có

Để hàm số có giới hạn tại x = 2 thì ⇒ a = 1.

Vậy a = 1.

Ví dụ 2: Tìm các giá trị thực của tham số m để hàm số để tồn tại

Lời giải

Ta có

Để hàm số có giới hạn tại x = 1 thì ⇒ m − 3 = −2 ⇔ m = 1.

Vậy m = 1.

3. Bài tập tự luyện

Câu 1. Tính bằng:

  1. -1 B. −∞ C. +∞ D. -3

Câu 2. Tính bằng:

  1. -2 B. C. D. 2

Câu 3. Tính bằng:

  1. 3 B. 1 C. 4 D. 2

Câu 4. Tính bằng:

Câu 5. Tính bằng:

Câu 6. Tính bằng:

  1. 4 B. 3 C. 0 D. 1

Câu 7. Tính bằng

  1. -2 B. 1 C. 2 D. -1

Câu 8. Tính bằng

  1. −∞ B. +∞ C. 0 D. 4

Câu 9. Tính là:

  1. 0 B. +∞ C. -2 D. −∞

Câu 10. Tính

  1. -2 B. −∞ C. 0 D. +∞

Câu 11. Cho . Giá trị của a là:

  1. 6 B. 10 C. -10 D. -6

Câu 12. Kết quả đúng của bằng:

Câu 13. Trong các mệnh đề sau, mệnh đề nào đúng?

Câu 14. Cho . Tính .

  1. 0 B. 4 C. +∞ D. Không tồn tại

Câu 15. Tìm các giá trị thực của tham số m để hàm số có giới hạn tại x = 0.

  1. m = - 1 B. m = 2 C. m = -2 D. m = 1

Bảng đáp án

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C

A

A

B

A

C

A

C

B

A

C

C

B

A

D

Xem thêm phương pháp giải các dạng bài tập Toán lớp 11 có đáp án, hay khác:

  • Hàm số liên tục và cách giải các dạng bài tập
  • Cách tính đạo hàm bằng định nghĩa hay, chi tiết
  • Quy tắc tính đạo hàm và cách giải bài tập
  • Đạo hàm của hàm số lượng giác và cách giải
  • Ứng dụng Đạo hàm để giải phương trình, bất phương trình
  • Gói luyện thi online hơn 1 triệu câu hỏi đầy đủ các lớp, các môn, có đáp án chi tiết. Chỉ từ 200k!

Săn SALE shopee Tết:

  • Đồ dùng học tập giá rẻ
  • Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
  • Tsubaki 199k/3 chai
  • L'Oreal mua 1 tặng 3

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và gia sư dành cho phụ huynh tại //tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Chủ Đề