Nhận xét: Khi góc $$ \alpha $$ tăng từ $$ {{0}^{o}} $$ đến $$ {{90}^{o}} $$ $$ ({{0}^{o}}<\alpha <{{90}^{o}}) $$ thì $$ \sin \alpha $$ và $$ tg\alpha $$ tăng còn $$ \cos \alpha $$ và $$ \cot g\alpha $$ giảm. Show 1. Cách dùng bảng Khi tìm tỉ số lượng giác của một góc nhón bằng bảng VIII và bảng IX, ta thực hiện các bước sau: Bước 1: Tra số độ ở cột 1 đối với sin và tang (cột 13 đối với coossin và côtang). Bước 2: Tra số phút ở hàng 1 đối với sin và tang (hàng cuối đối với côsin và côtang). Bước 3. Lấy giá trị tại giao của hàng ghi số độ và cột ghi số phút. Trong trường hợp số phút không là bội của 6 thì lấy cột phút gần nhất với số phút phải xét, số phút chênh lệch còn lại xem ở phần hiệu chính. 2. Cách dùng máy tính Đối với máy tính Casio fx-570ES PLUS : - Khi sử dụng ta đưa về chế độ tính các góc với đơn vị (độ - phút – giây) bằng cách nhấn shift + mode + 3. Khi đó trên màn hình xuất hiện chữ D. - Khi tính toán ta thường lấy kết quả 4 chữ số thập phân nên ta nhấn liên tiếp ba phím shift + mode + 6, rồi nhấn 4, xuất hiện chữ FIX. - Để tìm tỉ số lượng giác của góc nhọn cho trước ta sử dụng các phím sin, cos, tan. - Để tìm số đo của góc nhọn khi biết tỉ số lượng giác của góc đó ta nhân liên tiếp các phím: SHIFT sin để tìm $$ \alpha $$ khi biết $$ \sin \alpha $$ . SHIFT cos để tìm $$ \alpha $$ khi biết $$ \cos \alpha $$ . SHIFT tan để tìm $$ \alpha $$ khi biết $$ tg\,\alpha $$ . - Nếu phải tìm góc x khi biết cotg x, ta có thể chuyển thành bài toán tìm góc nhọn x khi biết $$ tg\,x $$ . Vì $$ tg\,x=\frac{1}{\cot g\,x} $$ . Một cạnh của tam giác bằng 13, hai cạnh còn lại tạo với nhau 1 góc 60 độ. Tính độ dài 2 cạnh đó, biết hiệu của chúng bằng 7 CHÚ Ý : Em chưa học sin,cos,tan nên anh chị gửi lời giải nhớ xem lại trong đó có sin,cos,tan hay không. Em xin cảm ơn 1. Định nghĩaTrong mặt phẳng toạ độ \(Oxy\), nửa đường tròn tâm \(O\) nằm phía trên trục hoành bán kính \(R=1\) được gọi là nửa đường tròn đơn vị. Với mỗi góc \(\alpha\) (\(0^o\le\alpha\le180^o\)) ta xác định được duy nhất một điểm \(M\) trên nửa đường tròn đơn vị sao cho \(\widehat{xOM}=\alpha\) và giả sử điểm \(M\) có toạ độ \(M\left(x_0;y_0\right)\). Khi đó ta định nghĩa: + \(\sin\) của góc \(\alpha\) là \(y_0\), kí hiệu \(\sin\alpha=y_0\) ; + côsin của góc \(\alpha\) là \(x_0\), kí hiệu là \(\cos\alpha=x_0\) ; + tang của góc \(\alpha\) là \(\dfrac{y_0}{x_0}\) (\(x_0\ne0\)), kí hiệu là \(\tan\alpha=\dfrac{y_0}{x_0}\) ; + côtang của góc \(\alpha\) là \(\dfrac{x_0}{y_0}\) (\(y_0\ne0\)), kí hiệu là \(\cot\alpha=\dfrac{x_0}{y_0}\). Các số \(\sin\alpha\), \(\cos\alpha\), \(\tan\alpha\), \(\cot\alpha\) được gọi là các giá trị lượng giác của góc \(\alpha\). Ví dụ 1: Cho góc \(\alpha=135^o\). Tìm các giá trị lượng giác của góc \(\alpha\). Giải: Lấy điểm \(M\) trên nửa đường tròn đơn vị sao cho \(\widehat{xOM}=135^o\). Khi đó ta có \(\widehat{yOM}=45^o\). Từ đó ta suy ra toạ độ điểm \(M\) là \(M\left(-\dfrac{\sqrt{2}}{2};\dfrac{\sqrt{2}}{2}\right)\). Vậy \(\sin135^o=\dfrac{\sqrt{2}}{2}\) ; \(\cos135^o=-\dfrac{\sqrt{2}}{2}\) ; \(\tan135^o=-1\) ; \(\cot135^o=-1\). Chú ý: +) Nếu \(\alpha\) là góc tù thì \(\cos\alpha< 0\), \(\tan\alpha< 0\), \(\cot\alpha< 0\). +) \(\tan\alpha\) chỉ xác định khi \(\alpha\ne90^o\) \(\cot\alpha\) chỉ xác định khi \(\alpha\ne0^o\) và \(\alpha\ne180^o\). 2. Tính chấtCũng trên nửa đường tròn đơn vị, ngoài điểm \(M\left(x_0;y_0\right)\) ta lấy điểm \(N\) sao cho dây cung \(NM\) song song với trục \(Ox\) và nếu \(\widehat{xOM}=\alpha\) thì \(\widehat{xON}=180^0-\alpha\). Ta có \(y_M=y_N=y_0\) , \(x_M=-x_N=x_0\). Từ đó ta suy ra tính chất: \(\sin\alpha=\sin\left(180^o-\alpha\right)\) \(\cos\alpha=-\cos\left(180^o-\alpha\right)\) \(\tan\alpha=-\tan\left(180^o-\alpha\right)\) \(\cot\alpha=-\cot\left(180^o-\alpha\right)\) Ví dụ: \(\sin20^o=\sin160^o\) (do \(20^o+160^o=180^o\)) \(\cos52^o=-\cos128^o\) (do \(52^o+128^o=180^o\)) \(\tan30^o=-\tan150^o\) (do \(30^o+150^o=180^o\)) \(\cot75^o=-\cot105^o\) (do \(75^o+105^o=180^o\)) 3. Giá trị lượng giác của các góc đặc biệtBảng giá trị lượng giác của các góc đặc biệt \(\alpha\)\(0^o\)\(30^o\)\(45^o\)\(60^o\)\(90^o\)\(180^o\)\(\sin\alpha\)\(0\)\(\dfrac{1}{2}\)\(\dfrac{\sqrt{2}}{2}\)\(\dfrac{\sqrt{3}}{2}\)\(1\)\(0\)\(\cos\alpha\)\(1\)\(\dfrac{\sqrt{3}}{2}\)\(\dfrac{\sqrt{2}}{2}\)\(\dfrac{1}{2}\)\(0\)\(-1\)\(\tan\alpha\)\(0\)\(\dfrac{1}{\sqrt{3}}\)\(1\)\(\sqrt{3}\)\(||\)\(0\)\(\cot\alpha\)\(||\)\(\sqrt{3}\)\(1\)\(\dfrac{1}{\sqrt{3}}\)\(0\)\(||\)Trong bảng, kí hiệu "\(||\)" để chỉ giá trị lượng giác không xác định. Chú ý: Từ giá trị lượng giác của các góc đặc biệt đã cho trong bảng và tính chất trên, ta có thể suy ra giá trị lượng giác của một số góc đặc biệt khác. Ví dụ: \(\sin120^o=\sin\left(180^o-60^o\right)=\sin60^o=\dfrac{\sqrt{3}}{2}\) ; \(\cos135^o=\cos\left(180^o-45^o\right)=-\cos45^o=-\dfrac{\sqrt{2}}{2}\) ; \(\tan150^o=\tan\left(180^o-30^o\right)=-\tan30^o=-\dfrac{1}{\sqrt{3}}\) ; ... 4. Góc giữa hai vectơa) Định nghĩa:
b) Chú ý: Từ định nghĩa ta có \(\left(\overrightarrow{a},\overrightarrow{b}\right)=\left(\overrightarrow{b},\overrightarrow{a}\right)\). Nhận xét: Khi hai vectơ cùng hướng thì góc giữa hai vectơ bằng \(0^o\) ; Khi hai vectơ ngược hướng thì góc giữa hai vectơ bằng \(180^o\). c) Ví dụ Cho tam giác \(ABC\) vuông tại \(A\) và có góc \(\widehat{B}=50^o\). Khi đó ta có: \(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=50^o\) ; \(\left(\overrightarrow{AB},\overrightarrow{BC}\right)=130^o\) ; \(\left(\overrightarrow{CA},\overrightarrow{CB}\right)=40^o\) ; \(\left(\overrightarrow{AC},\overrightarrow{BC}\right)=40^o\) ; \(\left(\overrightarrow{AC},\overrightarrow{CB}\right)=140^o\) ; \(\left(\overrightarrow{AC},\overrightarrow{BA}\right)=90^o\). 5. Sử dụng máy tính bỏ túi để tính giá trị lượng giác của một gócTa có thể sử dụng các loại máy tính bỏ túi để tính giá trị lượng giác của một góc, chẳng hạn đối với máy CASIO fx - 500MS cách thực hiện như sau: a) Tính các giá trị lượng giác của góc \(\alpha\) Sau khi mở máy ấn phím MODE nhiều lần để màn hình hiện lên dòng chữ ứng với các số sau đây: Deg Rad Gra 1 2 3 Sau đó ấn phím 1 để xác định đơn vị đo góc là "độ" và tính giá trị lượng giác của góc. Ví dụ 1: Tính \(\sin63^o52'41''\). Ấn liên tiếp các phím: Ta được kết quả là: \(\sin63^o52'41''\approx0,897859012\). b) Xác định độ lớn của góc khi biết giá trị lượng giác của góc đó Sau khi mở máy và chọn đơn vị đo góc, để tính góc \(x\) khi biết các giá trị lượng giác của góc đó ta làm như ví dụ sau: |