What do the bone structures indicate about the ancestor of humans whales and bats?

  • Entertainment & Pop Culture
  • Geography & Travel
  • Health & Medicine
  • Lifestyles & Social Issues
  • Literature
  • Philosophy & Religion
  • Politics, Law & Government
  • Science
  • Sports & Recreation
  • Technology
  • Visual Arts
  • World History
  • On This Day in History
  • Quizzes
  • Podcasts
  • Dictionary
  • Biographies
  • Summaries
  • Top Questions
  • Week In Review
  • Infographics
  • Demystified
  • Lists
  • #WTFact
  • Companions
  • Image Galleries
  • Spotlight
  • The Forum
  • One Good Fact
  • Entertainment & Pop Culture
  • Geography & Travel
  • Health & Medicine
  • Lifestyles & Social Issues
  • Literature
  • Philosophy & Religion
  • Politics, Law & Government
  • Science
  • Sports & Recreation
  • Technology
  • Visual Arts
  • World History
  • Britannica Classics
    Check out these retro videos from Encyclopedia Britannica’s archives.
  • Demystified Videos
    In Demystified, Britannica has all the answers to your burning questions.
  • #WTFact Videos
    In #WTFact Britannica shares some of the most bizarre facts we can find.
  • This Time in History
    In these videos, find out what happened this month [or any month!] in history.
  • Britannica Explains
    In these videos, Britannica explains a variety of topics and answers frequently asked questions.
  • Student Portal
    Britannica is the ultimate student resource for key school subjects like history, government, literature, and more.
  • COVID-19 Portal
    While this global health crisis continues to evolve, it can be useful to look to past pandemics to better understand how to respond today.
  • 100 Women
    Britannica celebrates the centennial of the Nineteenth Amendment, highlighting suffragists and history-making politicians.
  • Britannica Beyond
    We’ve created a new place where questions are at the center of learning. Go ahead. Ask. We won’t mind.
  • Saving Earth
    Britannica Presents Earth’s To-Do List for the 21st Century. Learn about the major environmental problems facing our planet and what can be done about them!
  • SpaceNext50
    Britannica presents SpaceNext50, From the race to the Moon to space stewardship, we explore a wide range of subjects that feed our curiosity about space!

  1. Last updated
  2. Save as PDF
  • Page ID6542
  • Is this evidence of evolution?

    Take a close look at this gorilla hand. The similarities to a human hand are remarkable. Comparing anatomy, and characterizing the similarities and differences, provides evidence of evolution.

    Evidence from Living Species

    Just as Darwin did many years ago, today’s scientists study living species to learn about evolution. They compare the anatomy, embryos, and DNA of modern organisms to understand how they evolved.

    Comparative Anatomy

    Comparative anatomy is the study of the similarities and differences in the structures of different species. Similar body parts may be homologies or analogies. Both provide evidence for evolution.

    Homologous structures are structures that are similar in related organisms because they were inherited from a common ancestor. These structures may or may not have the same function in the descendants. Figure below shows the hands of several different mammals. They all have the same basic pattern of bones. They inherited this pattern from a common ancestor. However, their forelimbs now have different functions.

    The forelimbs of all mammals have the same basic bone structure.

    Analogous structures are structures that are similar in unrelated organisms. The structures are similar because they evolved to do the same job, not because they were inherited from a common ancestor. For example, the wings of bats and birds, shown in Figure below, look similar on the outside. They also have the same function. However, wings evolved independently in the two groups of animals. This is apparent when you compare the pattern of bones inside the wings.

    Wings of bats and birds serve the same function. Look closely at the bones inside the wings. The differences show they developed from different ancestors.

    Comparative Embryology

    Comparative embryology is the study of the similarities and differences in the embryos of different species. Similarities in embryos are evidence of common ancestry. All vertebrate embryos, for example, have gill slits and tails. Most vertebrates, except for fish, lose their gill slits by adulthood. Some of them also lose their tail. In humans, the tail is reduced to the tail bone. Thus, similarities organisms share as embryos may be gone by adulthood. This is why it is valuable to compare organisms in the embryonic stage. See//www.pbs.org/wgbh/evolution/library/04/2/pdf/l_042_03.pdf for additional information and a comparative diagram of human, monkey, pig, chicken and salamander embryos.

    Vestigial Structures

    Structures like the human tail bone and whale pelvis are called vestigial structures. Evolution has reduced their size because the structures are no longer used. The human appendix is another example of a vestigial structure. It is a tiny remnant of a once-larger organ. In a distant ancestor, it was needed to digest food. It serves no purpose in humans today. Why do you think structures that are no longer used shrink in size? Why might a full-sized, unused structure reduce an organism’s fitness?

    KQED: The Reverse Evolution Machine

    In search of the common ancestor of all mammals, University of California Santa Cruz scientist David Haussler is pulling a complete reversal. Instead of studying fossils, he's comparing the genomes of living mammals to construct a map of our common ancestors' DNA. He also specializes in studying the DNA of extinct animals, asking how the DNA has changed over millions of years to create today's species. His technique, referred to as computational genomics, holds promise for providing a better picture of how life evolved. See//www.kqed.org/quest/televis...lution-machine for more information.

    Summary

    • Scientists compare the anatomy, embryos, and DNA of living things to understand how they evolved.
    • Evidence for evolution is provided by homologous structures. These are structures shared by related organisms that were inherited from a common ancestor.
    • Other evidence for evolution is provided by analogous structures. These are structures that unrelated organisms share because they evolved to do the same job.
    • Comparing DNA sequences provided some of the strongest evidence of evolutionary relationships.

    Explore More

    Use this resource to answer the questions that follow.

    • Similarities and differences: understanding homology and analogy at //evolution.berkeley.edu/evolibrary/article/0_0_0/similarity_ms_01.
    1. Distinguish between homology and analogy.
    2. How are tetrapod limbs similar to each other?
    3. Give four examples of homologous tetrapod limbs.
    4. Give an example of a homologous structure in insects.
    5. What can happen to homologous structures of different species over time?
    6. Why are tetrapod and octopus limbs not homologous?

    Review

    1. What are vestigial structures? Give an example.
    2. Compare homologous and analogous structures.
    3. Why do vertebrate embryos show similarities between organisms that do not appear in the adults?
    4. Humans and apes have five fingers they can use to grasp objects. Do you think these are analogous or homologous structures? Explain.
    5. What is the strongest evidence of evolution from a common ancestor?

    What type of evidence is humans chimpanzees whales and bats all have the same bones in their arms fins or wings?

    Humans, chimpanzees, whales, and bats all have the same bones in their arms, fins, or wings. b. Why is this evidence of evolution? This is evidence of evolution because if all these animals have the same bones, they probably all evolved from one creature that had those bones a very long time ago.

    What evidence suggests that humans and bats have a common ancestor?

    Previous studies on mammal DNA indicated that the common ancestor of these species lived 80 million years ago. The analysis showed that this common ancestor had DNA much more like our own than some of its other descendants, judging by the reconstruction.

    What does the bone similarity between whales lions and humans suggest?

    Homologous structures are structures that have a common function and suggest common ancestry. For example, homologous structures include the limbs of mammals, such as bats, lions, whales, and humans, which all have a common ancestor.

    What is the structure of the human whale bat?

    Whales, bats, cheetah and human share similarities in the pattern of bones of forelimbs. Though these forelimbs perform different functions in these animals, they have similar anatomical structure – all of them have humerus, radius, ulna, carpals, metacarpals and phalanges in their forelimbs.

    Chủ Đề