Công thức 2 đường thẳng vuông góc lớp 10

Cho hai đường thẳng y = ax + b và y’ = a’x + b’:


Hai đường thẳng vuông góc với nhau: a.a’ = -1.Hai đường thẳng song song với nhau: a = a’ và b≠ b’.Hai đường thẳng cắt nhau: a ≠ a’.Hai đường thẳng trùng nhau: a = a’ và b = b’.

Trong chương trình toán lớp 9, bên cạnh phần đại số thì hình học là một phần không kém quan trọng. Hình học hỗ trợ kỹ năng tư duy toán học tượng hình. Để học tốt toán cần tìm hiểu và ghi nhớ kỹ lưỡng các công thức.

Hình học trong toán 9

Toán học là môn học quan trọng, cần được đầu tư kỹ lưỡng về thời gian học. Thời lượng làm bài tập chia đều cho khoảng thời gian trong ngày. Tìm kiếm thêm tài liệu để tham khảo, tìm hiểu bài tập để làm bổ sung.

Bên cạnh đó kết hợp với nâng cao năng lực tự học tìm hiểu cái mới. Giải quyết các bài khó bằng phương pháp tự học, học nhóm. Lập nhóm để giúp nhau học tập hiệu quả hơn. Kết hợp vui chơi giải trí, thư giãn đầu óc. Lớp 9 là lớp cuối cấp, chuẩn bị bước vào kì thi vào lớp 10, hẳn sẽ gặp nhiều áp lực.

Xem thêm: Cốt Cách Mỹ Nhân Chương Mới Nhất, Cốt Cách Mỹ Nhân

Nhưng các em chưa cần phải quá bận tâm về vấn đề này. Phía trước còn chặng đường dài học tập. Tập trung ôn luyện để chuẩn bị cho kỳ thi chuyển cấp. Nắm vững kiến thức làm tiền đề cho các cấp học sau này. Dùng kiến thức để áp dụng trong cuộc sống hằng ngày.


Bên cạnh đó, học tập không bao giờ là đủ, không chỉ môn toán mà còn những môn học khác cũng cần được chú trọng. Nền tảng khoa học để bổ trợ cho nhau.

Hai đường thẳng song song

Phần hình học của chương trình toán lớp 9 gồm các kiến thức đã có từ lớp trước. Được triển khai và chuyên sâu hơn. Nội dung về không gian, hình khối. Trung điểm, tia, đường thẳng, các phương pháp chứng minh.

Để làm tốt bài tập cần nắm rõ các công thức tính toán [tính diện tích, thể tích]. Các điều kiện để bằng nhau, giao nhau, song song, đồng dạng. Về đường thẳng có các trạng thái, trường hợp như sau: vuông góc với nhau, song song với nhau, cắt nhau và cuối cùng là trùng nhau.

Hai đường thẳng được cho là vuông góc với nhau khi chỉ số a x a’= -1. Khi đó, chúng gặp nhau và tạo thành 1 góc 90 độ. Trường hợp song song là khi chỉ số a = a’ và b ≠ b’, trong trường hợp này thì 2 đường thẳng không có điểm chung và không giao nhau tại 1 số thời điểm. Khi chỉ số a ≠ a’ sẽ dẫn đến trường hợp 2 đường thẳng giao nhau. Trùng nhau ở trường hợp a = a’.

Hai đường thẳng cắt nhau



Như chúng tôi đã trình bày ở trên, hai đường thẳng được gọi là vuông góc khi mà tích hệ số góc của chúng bằng -1. Vậy, với chuyên đề này có những dạng toán nào. Thứ nhất, chứng minh hai đường thẳng vuông góc. Học sinh chỉ cần xác định đúng hệ số góc của đường thẳng. Đây là bước học sinh dễ mắc sai lầm nhất. Cần đưa phương trình đường thẳng về dạng tổng quát thì mới được xác định hệ số góc. Khi đã có hệ số góc của hai đường thì thực hiện tích của chúng. Nếu tích thỏa mãn bằng -1 thì chứng minh hai đường thẳng vuông góc.


Dạng toán thứ hai là tìm giá trị tham số để thỏa mãn hai đường thẳng vuông góc. Các bước làm cụ thể như sau:

Bước 1: Xác định hệ sốgóc của hai đường thẳng theo tham sốBước 2: Lập biểu thứctích hai hệ số góc bằng -1Bước 3. Giải phương trìnhchứa tham số đã lập ở bước 2Bước 4: Kết luận và kiểmtra lại bài

Haidạng toán này là dạng cơ bản thường gặp. Tuy nhiên khi lên các lớp cao hơn độkhó cũng cao hơn hẳn. Ví dụ, chứng minh hai mặt phẳng vuông góc, tìm góc tronghình khong gian,…

Tóm lại, mối quan hệ giữa các đường thẳng là nền tảng cơ bản cho kiến thức nâng cao hơn. Do đó, các bạn cần nắm chắc tất cả lý thuyết liên quan đến chuyên đề này. Đồng thời cố gắng vận dụng nhanh chóng và linh hoạt để nâng cao kết quả học tập.

10:11:2527/02/2019

Vì vậy, trong bài viết này chúng ta cùng hệ thống lại các dạng toán về phương trình đường thẳng trong mặt phẳng và giải các bài tập minh hoạ cho từng dạng toán để các em dễ dàng nắm bắt kiến thức tổng quát của đường thẳng.

• xem thêm: Các dạng toán về phương trình đường tròn

I. Tóm tắt lý thuyết phương trình đường thẳng

1. Vectơ pháp tuyến và phương trình tổng quát của đường thẳng

a] Vectơ pháp tuyến của đường thẳng

- Cho đường thẳng [d], vectơ 

gọi là vectơ pháp tuyến [VTPT] của [d] nếu giá của 
 vuông góc với [d].

* Nhận xét: Nếu 

 là vectơ pháp tuyến của [d] thì 
 cũng là VTPT của [d].

b] Phương trình tổng quát của đường thẳng

* Định nghĩa

Phương trình [d]: ax + by + c = 0, trong đó a và b không đồng thời bằng 0 tức là [a2 + b2 ≠ 0] là phương trình tổng quát của đường thẳng [d] nhận

 là vectơ pháp tuyến.

* Các dạng đặc biệt của phương trình đường thẳng.

- [d]: ax + c = 0 [a ≠ 0]: [d] song song hoặc trùng với Oy

- [d]: by + c = 0 [b ≠ 0]: [d] song song hoặc trùng với Ox

- [d]: ax + by = 0 [a2 + b2 ≠ 0]: [d] đi qua gốc toạ độ.

- Phương trình dạng đoạn chắn: ax + by = 1 nên [d] đi qua A [a;0] B[0;b] [a,b ≠ 0]

- Phương trình đường thẳng có hệ số góc k: y= kx+m [k được gọi là hệ số góc của đường thẳng].

2. Vectơ chỉ phương và phương trình tham số, phương trình chính tắc của đường thẳng

a] Vectơ chỉ phương của đường thẳng

- Cho đường thẳng [d], vectơ

 gọi là vectơ chỉ phương [VTCP] của [d] nếu giá của
 song song hoặc trùng với [d].

* Nhận xét: Nếu 

 là vectơ chỉ phương của [d] thì
 cũng là VTCP của [d]. VTCP và VTPT vuông góc với nhau, vì vậy nếu [d] có VTCP 
 thì 
 là VTPT của [d].

b] Phương trình tham số của đường thẳng: 

* có dạng: 

 ; [a2 + b2 ≠ 0] đường thẳng [d] đi qua điểm M0[x0;y0] và nhận 
 làm vectơ chỉ phương, t là tham số.

* Chú ý: - Khi thay mỗi t ∈ R vào PT tham số ta được 1 điểm M[x;y] ∈ [d].

 - Nếu điểm M[x;y] ∈ [d] thì sẽ có một t sao cho x, y thoả mãn PT tham số.

 - 1 đường thẳng sẽ có vô số phương trình tham số [vì ứng với mỗi t ∈ R ta có 1 phương trình tham số].

c] Phương trình chính tắc của đường thẳng

* có dạng:  

 ; [a,b ≠ 0] đường thẳng [d] đi qua điểm M0[x0;y0] và nhận 
 làm vectơ chỉ phương.

d] Phương trình đường thẳng đi qua 2 điểm

- Phương trình đường thẳng đi qua 2 điểm A[xA;yA] và B[xB;yB] có dạng:

 + Nếu: 

 thì đường thẳng qua AB có PT chính tắc là:

 + Nếu: xA = xB: ⇒ AB: x = xA

 + Nếu: yA = yB: ⇒ AB: y = yA

e] Khoảng cách từ 1 điểm tới 1 đường thẳng

- Cho điểm M[x0;y0] và đường thẳng Δ: ax + by + c = 0, khoảng cách từ M đến Δ được tính theo công thức sau:

 

3. Vị trí tương đối của 2 đường thẳng

- Cho 2 đường thẳng [d1]: a1x + b1y + c1 = 0; và [d2]: a2x + b2y + c =0;

 + d1 cắt d2 ⇔ 

 + d1 // d2 ⇔

 và 
 hoặc 
 và

 + d1 ⊥ d2 ⇔

* Lưu ý: nếu a2.b2.c2 ≠ 0 thì:

 - Hai đường thẳng cắt nhau nếu: 

 - Hai đường thẳng // nhau nếu: 

 - Hai đường thẳng ⊥ nhau nếu: 

II. Các dạng toán về phương trình đường thẳng

Dạng 1: Viết phương trình đường thẳng khi biết vectơ pháp tuyến và 1 điểm thuộc đường thẳng

 

 Ví dụ: Viết PT tổng quát của đường thẳng [d] biết [d]: đi qua điểm M[1;2] và có VTPT 

 = [2;-3].

* Lời giải: Vì [d] đi qua điểm M[1;2] và có VTPT 

 = [2;-3]

⇒ PT tổng quát của đường thẳng [d] là: 2[x-1] - 3[y-2] = 0 ⇔ 2x - 3y +4 = 0

Dạng 2: Viết phương trình đường thẳng khi biết vectơ chỉ phương và 1 điểm thuộc đường thẳng

 

 Ví dụ: Viết phương trình đường thẳng [d] biết rằng [d] đi qua điểm M[-1;2] và có VTCP 

 = [2;-1]

* Lời giải: Vì đường thẳng  đi qua M [1 ;-2] và có vtcp là 

 = [2;-1]

 ⇒ phương trình tham số của đường thẳng là : 

Dạng 3: Viết phương trình đường thẳng đi qua 1 điểm và song song với 1 đường thẳng

 

 

 Ví dụ: Viết phương trình đường thẳng [d] biết rằng:

 a] đi qua M[3;2] và //Δ: 

 b] đi qua M[3;2] và //Δ: 2x - y - 1 = 0

* Lời giải:

a] Đường thẳng Δ có VTCP 

 = [2;-1] vì [d] // Δ nên [d] nhận 
 = [2;-1] là VTCP, [d] qua M[3;2]

⇒ PT đường thẳng [d] là: 

b] đường thẳng Δ: 2x – y – 1 = 0 có vtpt là

 = [2;-1]. Đường thẳng [d] //Δ nên 
 = [2;-1] cũng là VTPT của [d].

⇒ PT [d] đi qua điểm M[3;2] và có VTPT 

 = [2;-1] là: 2[x-3] - [y-2] = 0 ⇔ 2x - y -4 = 0

Dạng 4: Viết phương trình đường thẳng đi qua 1 điểm và vuông góc với 1 đường thẳng

  

 

 Ví dụ: Viết phương trình đường thẳng [d] biết rằng [d]:

a] đi qua M[-2;3] và ⊥ Δ: 2x - 5y + 3 = 0

b] đi qua M[4;-3] và ⊥ Δ:

 

* Lời giải:

a] Đường thẳng Δ: 2x - 5y + 3 = 0 nên Δ có VTPT là 

=[2;-5]

vì [d] vuông góc với Δ nên [d] nhận VTPT của Δ làm VTCP ⇒

 = [2;-5]

⇒ PT [d] đi qua M[-2;3] có VTCP 

 = [2;-5] là: 

b] Đường thẳng Δ có VTCP

= [2;-1], vì d⊥ Δ nên [d] nhận VTCP 
 làm VTPT ⇒
 = [2;-1]

⇒ Vậy [d] đi qua M[4;-3] có VTPT 

 = [2;-1] có PTTQ là: 2[x-4] - [y+3] = 0 ⇔ 2x - y - 11 = 0.

Dạng 5: Viết phương trình đường thẳng đi qua 2 điểm

- Đường thẳng đi qua 2 điểm A và B chính là đường thẳng đi qua A nhận nhận vectơ

 làm vectơ chỉ phương [trở về dạng toán 2].

 Ví dụ: Viết PTĐT đi qua 2 điểm A[1;2] và B[3;4].

* Lời giải:

- Vì [d] đi qua 2 điểm A, B nên [d] có VTCP là: 

 = [3-1;4-2] = [2;2]

⇒ Phương trình tham số của [d] là: 

Dạng 6: Viết phương trình đường thẳng đi qua 1 điểm và có hệ số góc k cho trước

- [d] có dạng: y = k[x-x0] + y0

 Ví dụ: Viết PTĐT [d] đi qua M[-1;2] và có hệ số góc k = 3;

* Lời giải: 

- PTĐT [d] đi qua M[-1;2] và có hệ số góc k = 3 có dạng: y = k[x-x0] + y0

⇒ Vậy PTĐT [d] là: y = 3[x+1] + 2 ⇔ y = 3x + 5.

Dạng 7: Viết phương trình đường trung trực của một đoạn thẳng

- Trung trực của đoạn thẳng AB chính là đường thẳng đi qua trung điểm I của đoạn thẳng này và nhận vectơ 

 làm VTPT [trở về dạng toán 1].

 Ví dụ: Viết PTĐT [d] vuông góc với đường thẳng AB và đi qua trung tuyến của AB biết: A[3;-1] và B[5;3]

* Lời giải:

- [d] vuông góc với AB nên nhận 

 = [2;4] làm vectơ pháp tuyến

- [d] đi qua trung điểm I của AB, và I có toạ độ: xi = [xA+xB]/2 = [3+5]/2 = 4; yi = [yA+yB]/2 = [-1+3]/2 = 1; ⇒ toạ độ của I[4;1]

⇒ [d] đi qua I[4;1] có VTPT [2;4] có PTTQ là: 2[x-4] + 4[y-1] = 0 ⇔ 2x + 4y -12 = 0 ⇔ x + 2y - 6 = 0.

Dạng 8: Viết phương trình đường thẳng đi qua 1 điểm và tạo với Ox 1 góc ∝ cho trước

- [d] đi qua M[x0;y0] và tạo với Ox 1 góc ∝ [00

Chủ Đề