Which condition is a female with trichomoniasis more susceptible to if exposed?

1. Secor WE, Meites E, Starr MC, Workowski KA. Neglected parasitic infections in the United States: trichomoniasis. Am J Trop Med Hyg. 2014;90[5]:800–804. doi: 10.4269/ajtmh.13-0723. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. World Health Organization, Geneva. Global incidence and prevalence of selected curable sexually transmitted infections - 2008. 2012 doi: 10.1016/s0968-8080[12]40660-7. [CrossRef] [Google Scholar]

3. Schwebke JR, Barrientes FJ. Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother. 2006;50[12]:4209–4210. doi: 10.1128/aac.00814-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recommen Rep. 2015;64[Rr-03]:1–137. [PMC free article] [PubMed] [Google Scholar]

5. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315[5809]:207–212. doi: 10.1126/science.1132894. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Petrin D, Delgaty K, Bhatt R, Garber G. Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev. 1998;11[2]:300–317. [PMC free article] [PubMed] [Google Scholar]

7. Lehker MW, Alderete JF. Biology of trichomonosis. Curr Opin Infect Dis. 2000;13[1]:37–45. doi: 10.1097/00001432-200002000-00007. [PubMed] [CrossRef] [Google Scholar]

8. Figueroa-Angulo EE, Rendon-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cardenas-Guerra RE, Ortega-Lopez J, Quintas-Granados LI, Alvarez-Sanchez ME, Arroyo R. The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect. 2012;14[15]:1411–1427. doi: 10.1016/j.micinf.2012.09.004. [PubMed] [CrossRef] [Google Scholar]

9. Meites E. Trichomoniasis: the "neglected" sexually transmitted disease. Infect Dis Clin North Am. 2013;27[4]:755–764. doi: 10.1016/j.idc.2013.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Kusdian G, Gould SB. The biology of Trichomonas vaginalis in the light of urogenital tract infection. Mol Biochem Parasitol. 2014;198[2]:92–99. doi: 10.1016/j.molbiopara.2015.01.004. [PubMed] [CrossRef] [Google Scholar]

11. Malla N, Goyal K, Dhanda RS, Yadav M. Immunity in urogenital protozoa. Parasite Immunol. 2014;36[9]:400–408. doi: 10.1111/pim.12114. [PubMed] [CrossRef] [Google Scholar]

12. Hirt RP, Sherrard J. Trichomonas vaginalis origins, molecular pathobiology and clinical considerations. Current opinion in infectious diseases. 2015;28[1]:72–79. doi: 10.1097/qco.0000000000000128. [PubMed] [CrossRef] [Google Scholar]

13. Kissinger P. Epidemiology and treatment of trichomoniasis. Curr Infect Dis Rep. 2015;17[6]:484. doi: 10.1007/s11908-015-0484-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Bowden FJ, Garnett GP. Why is Trichomonas vaginalis ignored? Sex Transm Infect. 1999;75[6]:372–374. [PubMed] [Google Scholar]

15. Maritz JM, Land KM, Carlton JM, Hirt RP. What is the importance of zoonotic trichomonads for human health? Trends Parasitol. 2014;30[7]:333–341. doi: 10.1016/j.pt.2014.05.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Poole DN, McClelland RS. Global epidemiology of Trichomonas vaginalis. Sex Transm Infect. 2013;89[6]:418–422. doi: 10.1136/sextrans-2013-051075. [PubMed] [CrossRef] [Google Scholar]

17. Pereira-Neves A, Ribeiro KC, Benchimol M. Pseudocysts in trichomonads--new insights. Protist. 2003;154[3-4]:313–329. doi: 10.1078/143446103322454095. [PubMed] [CrossRef] [Google Scholar]

18. Muller M. In: HONIGBERG BM, editor Trichomonads parasitic in humans. New York: Springer Verlag; 1990. Biochemistry of Trichomonas vaginalis. pp. 53–83. [Google Scholar]

19. Chose O, Sarde C-O, NoËL C, Gerbod D, Jimenez J-C, Brenner C, Capron M, Viscogliosi E, Roseto A. Cell Death in Protists without Mitochondria. Ann N Y Acad Sci. 2003;1010[1]:121–125. doi: 10.1196/annals.1299.021. [PubMed] [CrossRef] [Google Scholar]

20. Benchimol M. Hydrogenosomes under microscopy. Tissue Cell. 2009;41[3]:151–168. doi: 10.1016/j.tice.2009.01.001. [PubMed] [CrossRef] [Google Scholar]

21. Hammerschlag MR, Guillen CD. Medical and legal implications of testing for sexually transmitted infections in children. Clin Microbiol Rev. 2010;23[3]:493–506. doi: 10.1128/cmr.00024-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Reading R, Rogstad K, Hughes G, Debelle G. Gonorrhoea, chlamydia, syphilis and trichomonas in children under 13 years of age: national surveillance in the UK and Republic of Ireland. Arch Dis Child. 2014;99[8]:712–716. doi: 10.1136/archdischild-2013-304996. [PubMed] [CrossRef] [Google Scholar]

23. Crucitti T, Jespers V, Mulenga C, Khondowe S, Vandepitte J, Buve A. Non-sexual transmission of Trichomonas vaginalis in adolescent girls attending school in Ndola, Zambia. PloS one. 2011;6[1]:e16310. doi: 10.1371/journal.pone.0016310. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Carter JE, Whithaus KC. Neonatal respiratory tract involvement by Trichomonas vaginalis: a case report and review of the literature. Am J Trop Med Hyg. 2008;78[1]:17–19. [PubMed] [Google Scholar]

25. Duboucher C, Noel C, Durand-Joly I, Gerbod D, Delgado-Viscogliosi P, Jouveshomme S, Leclerc C, Cartolano GL, Dei-Cas E, Capron M, Viscogliosi E. Pulmonary coinfection by Trichomonas vaginalis and Pneumocystis sp. as a novel manifestation of AIDS. . Hum Pathol. 2003;34[5]:508–511. doi: 10.1016/s0046-8177[03]00088-1. [PubMed] [CrossRef] [Google Scholar]

26. Leterrier M, Morio F, Renard BT, Poirier AS, Miegeville M, Chambreuil G. Trichomonads in pleural effusion: case report, literature review and utility of PCR for species identification. New Microbiol. 2012;35[1]:83–87. [PubMed] [Google Scholar]

27. Ton Nu PA, Nguyen VQ, Cao NT, Dessi D, Rappelli P, Fiori PL. Prevalence of Trichomonas vaginalis infection in symptomatic and asymptomatic women in Central Vietnam. J Infect Dev Ctries. 2015;9[6]:655–660. doi: 10.3855/jidc.7190. [PubMed] [CrossRef] [Google Scholar]

28. Campbell L, Woods V, Lloyd T, Elsayed S, Church DL. Evaluation of the OSOM Trichomonas rapid test versus wet preparation examination for detection of Trichomonas vaginalis vaginitis in specimens from women with a low prevalence of infection. J Clin Microbiol. 2008;46[10]:3467–3469. doi: 10.1128/jcm.00671-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Andrea SB, Chapin KC. Comparison of Aptima Trichomonas vaginalis transcription-mediated amplification assay and BD affirm VPIII for detection of T. vaginalis in symptomatic women: performance parameters and epidemiological implications. . J Clin Microbiol. 2011;49[3]:866–869. doi: 10.1128/jcm.02367-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Schwebke JR, Hobbs MM, Taylor SN, Sena AC, Catania MG, Weinbaum BS, Johnson AD, Getman DK, Gaydos CA. Molecular testing for Trichomonas vaginalis in women: results from a prospective U.S. clinical trial. J Clin Microbiol. 2011;49[12]:4106–4111. doi: 10.1128/jcm.01291-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Domeika M, Zhurauskaya L, Savicheva A, Frigo N, Sokolovskiy E, Hallen A, Unemo M, Ballard RC. Guidelines for the laboratory diagnosis of trichomoniasis in East European countries. J Eur Acad Dermatol Venereol . 2010;24[10]:1125–1134. doi: 10.1111/j.1468-3083.2010.03601.x. [PubMed] [CrossRef] [Google Scholar]

32. Allsworth JE, Ratner JA, Peipert JF. Trichomoniasis and other sexually transmitted infections: results from the 2001-2004 National Health and Nutrition Examination Surveys. Sex Transm Dis. 2009;36[12]:738–744. doi: 10.1097/OLQ.0b013e3181b38a4b. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Forhan SE, Gottlieb SL, Sternberg MR, Xu F, Datta SD, McQuillan GM, Berman SM, Markowitz LE. Prevalence of sexually transmitted infections among female adolescents aged 14 to 19 in the United States. Pediatrics. 2009;124[6]:1505–1512. doi: 10.1542/peds.2009-0674. [PubMed] [CrossRef] [Google Scholar]

34. Krashin JW, Koumans EH, Bradshaw-Sydnor AC, Braxton JR, Evan Secor W, Sawyer MK, Markowitz LE. Trichomonas vaginalis prevalence, incidence, risk factors and antibiotic-resistance in an adolescent population. Sex Transm Dis. 2010;37[7]:440–444. doi: 10.1097/OLQ.0b013e3181cfcd8c. [PubMed] [CrossRef] [Google Scholar]

35. Chai SJ, Aumakhan B, Barnes M, Jett-Goheen M, Quinn N, Agreda P, Whittle P, Hogan T, Jenkins WD, Rietmeijer CA, Gaydos CA. Internet-based screening for sexually transmitted infections to reach nonclinic populations in the community: risk factors for infection in men. Sex Transm Dis. 2010;37[12]:756–763. doi: 10.1097/OLQ.0b013e3181e3d771. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Gaydos CA, Barnes MR, Quinn N, Jett-Goheen M, Hsieh YH. Trichomonas vaginalis infection in men who submit self-collected penile swabs after internet recruitment. Sex Transm Infect. 2013;89[6]:504–508. doi: 10.1136/sextrans-2012-050946. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. McNicholas C, Peipert JF, Maddipati R, Madden T, Allsworth JE, Secura GM. Sexually transmitted infection prevalence in a population seeking no-cost contraception. Sex Transm Dis. 2013;40[7]:546–551. doi: 10.1097/OLQ.0b013e31829529eb. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Ginocchio CC, Chapin K, Smith JS, Aslanzadeh J, Snook J, Hill CS, Gaydos CA. Prevalence of Trichomonas vaginalis and coinfection with Chlamydia trachomatis and Neisseria gonorrhoeae in the United States as determined by the Aptima Trichomonas vaginalis nucleic acid amplification assay. J Clin Microbiol. 2012;50[8]:2601–2608. doi: 10.1128/jcm.00748-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Meites E, Llata E, Braxton J, Schwebke JR, Bernstein KT, Pathela P, Asbel LE, Kerani RP, Mettenbrink CJ, Weinstock HS. Trichomonas vaginalis in selected U. S. sexually transmitted disease clinics: testing, screening, and prevalence. . Sex Transm Dis. 2013;40[11]:865–869. doi: 10.1097/olq.0000000000000038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Swartzendruber A, Sales JM, Brown JL, Diclemente RJ, Rose ES. Correlates of incident Trichomonas vaginalis infections among African American female adolescents. Sex Transm Dis. 2014;41[4]:240–245. doi: 10.1097/olq.0000000000000094. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Kim JK. Epidemiological trends of sexually transmitted infections among women in Cheonan, South Korea, 2006-2012. J Microbiol Biotechnol. 2013;23[10]:1484–1490. doi: 10.4014/jmb.1306.06055. [PubMed] [CrossRef] [Google Scholar]

42. Madhivanan P, Bartman MT, Pasutti L, Krupp K, Arun A, Reingold AL, Klausner JD. Prevalence of Trichomonas vaginalis infection among young reproductive age women in India: implications for treatment and prevention. Sex Health. 2009;6[4]:339–344. doi: 10.1071/sh09038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Ryder N, Woods H, McKay K, Giddings N, Lenton JA, Little C, Jeoffreys N, McNulty AM. Trichomonas vaginalis prevalence increases with remoteness in rural and remote New South Wales, Australia. Sex Transm Dis. 2012;39[12]:938–941. doi: 10.1097/OLQ.0b013e31826ae875. [PubMed] [CrossRef] [Google Scholar]

44. Bygott JM, Robson JM. The rarity of Trichomonas vaginalis in urban Australia. Sex Transm Infect. 2013;89[6]:509–513. doi: 10.1136/sextrans-2012-050826. [PubMed] [CrossRef] [Google Scholar]

45. Faber MT, Nielsen A, Nygard M, Sparen P, Tryggvadottir L, Hansen BT, Liaw KL, Kjaer SK. Genital chlamydia, genital herpes, Trichomonas vaginalis and gonorrhea prevalence, and risk factors among nearly 70,000 randomly selected women in 4 Nordic countries. Sex Transmitted Dis. 2011;38[8]:727–734. doi: 10.1097/OLQ.0b013e318214bb9b. [PubMed] [CrossRef] [Google Scholar]

46. Naidoo S, Wand H. Prevalence and incidence of Trichomonas vaginalis infections in women participating in a clinical trial in Durban, South Africa. Sex Transm Infect. 2013;89[6]:519–522. doi: 10.1136/sextrans-2012-050984. [PubMed] [CrossRef] [Google Scholar]

47. Salomon MC, Martinez N, Delgado D, Gonzalez Arra C, Bittar V, Gonzalez N. Trichomonas vaginalis prevalence in sex workers. Medicina. 2011;71[5]:429–431. [PubMed] [Google Scholar]

48. Neira O P, Correa LL A, Muñoz S N, Tardío O MT, Carabelli F M. Frecuencia de infección por Trichomonas vaginalis en atención primaria de salud. Rev Chil Obstet Ginecol. 2005;70[147-151] doi: 10.4067/s0717-75262005000300003. [CrossRef] [Google Scholar]

49. Leon SR, Konda KA, Bernstein KT, Pajuelo JB, Rosasco AM, Caceres CF, Coates TJ, Klausner JD. Trichomonas vaginalis infection and associated risk factors in a socially-marginalized female population in coastal Peru. Infecti Diseases Obstet Gynecol. 2009;2009:752437. doi: 10.1155/2009/752437. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Rafael VMichel FPB, Renata C M Wiltuschnig, Francine G Neves, Juliana Ribeiro, Renata C Vieiro, Patrícia B Vieira, Gabriela R Bohns, Tiana Tasca, Geraldo A De Carli. Prevalência da tricomonose em mulheres residentes na Vila dos Papeleiros em Porto Alegre, RS. RBAC. 2006;38[2]:127–130. doi: 10.1590/s0034-89102001000100006. [CrossRef] [Google Scholar]

51. Luppi CG, de Oliveira RL, Veras MA, Lippman SA, Jones H, de Jesus CH, Pinho AA, Ribeiro MC, Caiaffa-Filho H. Early diagnosis and correlations of sexually transmitted infections among women in primary care health services. Rev Bras Epidemiol. 2011;14[3]:467–477. doi: 10.1590/s1415-790x2011000300011. [PubMed] [CrossRef] [Google Scholar]

52. Grama DF, Casarotti Lda S, Morato MG, Silva LS, Mendonca DF, Limongi JE, Viana Jda C, Cury MC. Prevalence of Trichomonas vaginalis and risk factors in women treated at public health units in Brazil: a transversal study. Trans R Soc Trop Med Hyg. 2013;107[9]:584–591. doi: 10.1093/trstmh/trt063. [PubMed] [CrossRef] [Google Scholar]

53. Rocha DA, Filho RA, Marino JM, dos Santos CM. "Hidden" sexually transmitted infections among women in primary care health services, Amazonas, Brazil. Int J STD AIDS. 2014;25[12]:878–886. doi: 10.1177/0956462414523742. [PubMed] [CrossRef] [Google Scholar]

55. Fichorova RN. Impact of T. vaginalis infection on innate immune responses and reproductive outcome. . J Reprod Immunol. 2009;83[1-2]:185–189. doi: 10.1016/j.jri.2009.08.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Owusu-Edusei Jr K, Chesson HW, Gift TL, Tao G, Mahajan R, Ocfemia MC, Kent CK. The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sex Transm Dis. 2013;40[3]:197–201. doi: 10.1097/OLQ.0b013e318285c6d2. [PubMed] [CrossRef] [Google Scholar]

57. Chesson HW, Blandford JM, Pinkerton SD. Estimates of the annual number and cost of new HIV infections among women attributable to trichomoniasis in the United States. Sex Transm Dis. 2004;31[9]:547–551. doi: 10.1097/01.olq.0000137900.63660.98. [PubMed] [CrossRef] [Google Scholar]

58. Zhang ZF, Begg CB. Is Trichomonas vaginalis a cause of cervical neoplasia? Results from a combined analysis of 24 studies. . Int J Epidemiol. 1994;23[4]:682–690. doi: 10.1093/ije/23.4.682. [PubMed] [CrossRef] [Google Scholar]

59. Sutcliffe S, Neace C, Magnuson NS, Reeves R, Alderete JF. Trichomonosis, a common curable STI, and prostate carcinogenesis - a proposed molecular mechanism. PLoS Pathog. 2012;8[8]:e1002801. doi: 10.1371/journal.ppat.1002801. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Viikki M, Pukkala E, Nieminen P, Hakama M. Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol. 2000;39[1]:71–75. doi: 10.1080/028418600431003. [PubMed] [CrossRef] [Google Scholar]

61. Cotch MF, Pastorek 2nd JG, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA, Krohn MA, Klebanoff MA, Rao AV, Rhoads GG. Trichomonas vaginalis associated with low birth weight and preterm delivery. The vaginal infections and prematurity study group. . Sex Transm Dis. 1997;24[6]:353–360. doi: 10.1097/00007435-199707000-00008. [PubMed] [CrossRef] [Google Scholar]

62. Cotch MF, Pastorek 2nd JG, Nugent RP, Yerg DE, Martin DH, Eschenbach DA. Demographic and behavioral predictors of Trichomonas vaginalis infection among pregnant women. The Vaginal Infections and Prematurity Study Group. . Obstet Gynecol. 1991;78[6]:1087–1092. [PubMed] [Google Scholar]

63. Klebanoff MA, Carey JC, Hauth JC, Hillier SL, Nugent RP, Thom EA, Ernest JM, Heine RP, Wapner RJ, Trout W, Moawad A, Leveno KJ, Miodovnik M, Sibai BM, Van Dorsten JP, Dombrowski MP, O'Sullivan MJ, Varner M, Langer O, McNellis D, Roberts JM. Failure of metronidazole to prevent preterm delivery among pregnant women with asymptomatic Trichomonas vaginalis infection. N Engl J Med. 2001;345[7]:487–493. doi: 10.1056/NEJMoa003329. [PubMed] [CrossRef] [Google Scholar]

64. Silver BJ, Guy RJ, Kaldor JM, Jamil MS, Rumbold AR. Trichomonas vaginalis as a cause of perinatal morbidity: a systematic review and meta-analysis. Sex Transm Dis. 2014;41[6]:369–376. doi: 10.1097/olq.0000000000000134. [PubMed] [CrossRef] [Google Scholar]

65. Grodstein F, Goldman MB, Cramer DW. Relation of tubal infertility to history of sexually transmitted diseases. Epidemiol Rev. 1993;137[5]:577–584. [PubMed] [Google Scholar]

66. Gimenes F, Souza RP, Bento JC, Teixeira JJ, Maria-Engler SS, Bonini MG, Consolaro ME. Male infertility: a public health issue caused by sexually transmitted pathogens. Nat Rev Urol. 2014;11[12]:672–687. doi: 10.1038/nrurol.2014.285. [PubMed] [CrossRef] [Google Scholar]

67. McClelland RS, Sangare L, Hassan WM, Lavreys L, Mandaliya K, Kiarie J, Ndinya-Achola J, Jaoko W, Baeten JM. Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. J Infect Dis. 2007;195[5]:698–702. doi: 10.1086/511278. [PubMed] [CrossRef] [Google Scholar]

68. Quinlivan EB, Patel SN, Grodensky CA, Golin CE, Tien HC, Hobbs MM. Modeling the impact of Trichomonas vaginalis infection on HIV transmission in HIV-infected individuals in medical care. Sex Transm Dis. 2012;39[9]:671–677. doi: 10.1097/OLQ.0b013e3182593839. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Sparks JM. Vaginitis. J Reprod Med. 1991;36[10]:745–752. [PubMed] [Google Scholar]

70. Swygard H, Seña AC, Hobbs MM, Cohen MS. Trichomoniasis: clinical manifestations, diagnosis and management. Sex Transm Infect. 2004;80[2]:91–95. doi: 10.1136/sti.2003.005124. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Sutton M, Sternberg M, Koumans EH, McQuillan G, Berman S, Markowitz L. The prevalence of Trichomonas vaginalis infection among reproductive-age women in the United States, 2001-2004. Clinical Infectious Dis. 2007;45[10]:1319–1326. doi: 10.1086/522532. [PubMed] [CrossRef] [Google Scholar]

72. Muzny CA, Schwebke JR. The clinical spectrum of Trichomonas vaginalis infection and challenges to management. Sex Transm Infect. 2013;89[6]:423–425. doi: 10.1136/sextrans-2012-050893. [PubMed] [CrossRef] [Google Scholar]

74. Lazenby GB, Soper DE, Nolte FS. Correlation of leukorrhea and Trichomonas vaginalis infection. J Clin Microbiol. 2013;51[7]:2323–2327. doi: 10.1128/jcm.00416-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Cherpes TL, Wiesenfeld HC, Melan MA, Kant JA, Cosentino LA, Meyn LA, Hillier SL. The associations between pelvic inflammatory disease, Trichomonas vaginalis infection, and positive Herpes simplex virus type 2 serology. Sex Transm Dis. 2006;33[12]:747–752. doi: 10.1097/01.olq.0000218869.52753.c7. [PubMed] [CrossRef] [Google Scholar]

76. Stark JR, Judson G, Alderete JF, Mundodi V, Kucknoor AS, Giovannucci EL, Platz EA, Sutcliffe S, Fall K, Kurth T, Ma J, Stampfer MJ, Mucci LA. Prospective study of Trichomonas vaginalis infection and prostate cancer incidence and mortality: Physicians' Health Study. J Natl Cancer Inst. 2009;101[20]:1406–1411. doi: 10.1093/jnci/djp306. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Sutcliffe S, Giovannucci E, Alderete JF, Chang TH, Gaydos CA, Zenilman JM, De Marzo AM, Willett WC, Platz EA. Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15[5]:939–945. doi: 10.1158/1055-9965.epi-05-0781. [PubMed] [CrossRef] [Google Scholar]

78. Sutcliffe S, Alderete JF, Till C, Goodman PJ, Hsing AW, Zenilman JM, De Marzo AM, Platz EA. Trichomonosis and subsequent risk of prostate cancer in the Prostate Cancer Prevention Trial. Int J Cancer. 2009;124[9]:2082–2087. doi: 10.1002/ijc.24144. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Caini S, Gandini S, Dudas M, Bremer V, Severi E, Gherasim A. Sexually transmitted infections and prostate cancer risk: a systematic review and meta-analysis. Cancer Epidemiol. 2014;38[4]:329–338. doi: 10.1016/j.canep.2014.06.002. [PubMed] [CrossRef] [Google Scholar]

80. Sorvillo F, Smith L, Kerndt P, Ash L. Trichomonas vaginalis, HIV, and African-Americans. Emerg Infect Dis. 2001;7[6]:927–932. doi: 10.3201/eid0706.010603. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Van Der Pol B, Kwok C, Pierre-Louis B, Rinaldi A, Salata RA, Chen PL, van de Wijgert J, Mmiro F, Mugerwa R, Chipato T, Morrison CS. Trichomonas vaginalis infection and human immunodeficiency virus acquisition in African women. J Infect Dis. 2008;197[4]:548–554. doi: 10.1086/526496. [PubMed] [CrossRef] [Google Scholar]

82. Kissinger P, Adamski A. Trichomoniasis and HIV interactions: a review. Sex Transm Infect. 2013;89[6]:426–433. doi: 10.1136/sextrans-2012-051005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Lushbaugh WB, Turner AC, Gentry GA, Klykken PC. Characterization of a secreted cytoactive factor from Trichomonas vaginalis. Am J Trop Med Hyg. 1989;41[1]:18–28. [PubMed] [Google Scholar]

84. Garber GE, Lemchuk-Favel LT. Association of production of cell-detaching factor with the clinical presentation of Trichomonas vaginalis. J Clin Microbiol. 1990;28[11]:2415–2417. [PMC free article] [PubMed] [Google Scholar]

85. Hernandez HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. Parasite. 2014;21:54. doi: 10.1051/parasite/2014054. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Arroyo R, Alderete JF. Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect Immun. 1989;57[10]:2991–2997. [PMC free article] [PubMed] [Google Scholar]

87. Ryan CM, de Miguel N, Johnson PJ. Trichomonas vaginalis: current understanding of host-parasite interactions. Essays in Biochemistry. 2011;51:161–175. doi: 10.1042/bse0510161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Sommer U, Costello CE, Hayes GR, Beach DH, Gilbert RO, Lucas JJ, Singh BN. Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. J Biol Chem. 2005;280[25]:23853–23860. doi: 10.1074/jbc.M501752200. [PubMed] [CrossRef] [Google Scholar]

89. Arroyo R, Cardenas-Guerra RE, Figueroa-Angulo EE, Puente-Rivera J, Zamudio-Prieto O, Ortega-Lopez J. Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity. Biomed Res Int. 2015;2015:946787. doi: 10.1155/2015/946787. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Lehker MW, Chang TH, Dailey DC, Alderete JF. Specific erythrocyte binding is an additional nutrient acquisition system for Trichomonas vaginalis. J Exp Med. 1990;171[6]:2165–2170. doi: 10.1084/jem.171.6.2165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Fiori PL, Rappelli P, Addis MF. The flagellated parasite Trichomonas vaginalis: new insights into cytopathogenicity mechanisms. Microbes Infect. 1999;1[2]:149–156. doi: 10.1016/s1286-4579[99]80006-9. [PubMed] [CrossRef] [Google Scholar]

92. Arroyo R, Alderete JF. Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity. Arch Med Res. 1995;26[3]:279–285. [PubMed] [Google Scholar]

93. Lubick KJ, Burgess DE. Purification and analysis of a phospholipase A2-like lytic factor of Trichomonas vaginalis. Infect Immun. 2004;72[3]:1284–1290. doi: 10.1128/iai.72.3.1284-1290.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Mendoza-Lopez MR, Becerril-Garcia C, Fattel-Facenda LV, Avila-Gonzalez L, Ruiz-Tachiquin ME, Ortega-Lopez J, Arroyo R. CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence. Infect Immun. 2000;68[9]:4907–4912. doi: 10.1128/iai.68.9.4907-4912.2000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Dailey DC, Chang TH, Alderet JF. Characterization of Trichomonas vaginalis haemolysis. . Parasitology . 1990;101[Pt 2]:171–175. doi: 10.1017/s0031182000063204. [PubMed] [CrossRef] [Google Scholar]

96. Fiori PL, Rappelli P, Addis MF, Sechi A, Cappuccinelli P. Trichomonas vaginalis haemolysis: pH regulates a contact-independent mechanism based on pore-forming proteins. Microb Pathog. 1996;20[2]:109–118. doi: 10.1006/mpat.1996.0010. [PubMed] [CrossRef] [Google Scholar]

97. Ojcius DM, Young JD. Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem Sci. 1991;16[6]:225–229. doi: 10.1016/0968-0004[91]90090-i. [PubMed] [CrossRef] [Google Scholar]

98. Hecht O, Van Nuland NA, Schleinkofer K, Dingley AJ, Bruhn H, Leippe M, Grotzinger J. Solution structure of the pore-forming protein of Entamoeba histolytica. J Biol Chem. 2004;279[17]:17834–17841. doi: 10.1074/jbc.M312978200. [PubMed] [CrossRef] [Google Scholar]

99. Herbst R, Marciano-Cabral F, Leippe M. Antimicrobial and pore-forming peptides of free-living and potentially highly pathogenic Naegleria fowleri are released from the same precursor molecule. J Biol Chem. 2004;279[25]:25955–25958. doi: 10.1074/jbc.M401965200. [PubMed] [CrossRef] [Google Scholar]

100. Zhai Y, Saier Jr MH. The amoebapore superfamily. Biochimica et biophysica acta. 2000;1469[2]:87–99. doi: 10.1016/s0304-4157[00]00003-4. [PubMed] [CrossRef] [Google Scholar]

101. Coceres VM, Alonso AM, Nievas YR, Midlej V, Frontera L, Benchimol M, Johnson PJ, de Miguel N. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis. Cell Microbiol. 2015;17[8]:1217–1229. doi: 10.1111/cmi.12431. [PubMed] [CrossRef] [Google Scholar]

102. Twu O, de Miguel N, Lustig G, Stevens GC, Vashisht AA, Wohlschlegel JA, Johnson PJ. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate hostratioparasite interactions. PLoS pathog. 2013;9[7]:e1003482. doi: 10.1371/journal.ppat.1003482. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Twu O, Dessi D, Vu A, Mercer F, Stevens GC, de Miguel N, Rappelli P, Cocco AR, Clubb RT, Fiori PL, Johnson PJ. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. PNAS. 2014;111[22]:8179–8184. doi: 10.1073/pnas.1321884111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Gould SB, Woehle C, Kusdian G, Landan G, Tachezy J, Zimorski V, Martin WF. Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int J Parasitol. 2013;43[9]:707–719. doi: 10.1016/j.ijpara.2013.04.002. [PubMed] [CrossRef] [Google Scholar]

105. Alderete JF, Benchimol M, Lehker MW, Crouch ML. The complex fibronectin--Trichomonas vaginalis interactions and Trichomonosis. Parasitol Int. 2002;51[3]:285–292. doi: 10.1016/s1383-5769[02]00015-6. [PubMed] [CrossRef] [Google Scholar]

106. Lehker MW, Sweeney D. Trichomonad invasion of the mucous layer requires adhesins, mucinases, and motility. Sex Transm Infect. 1999;75[4]:231–238. doi: 10.1136/sti.75.4.231. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Okumura CY, Baum LG, Johnson PJ. Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell Microbiol. 2008;10[10]:2078–2090. doi: 10.1111/j.1462-5822.2008.01190.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Fichorova RN, Yamamoto HS, Fashemi T, Foley E, Ryan S, Beatty N, Dawood H, Hayes GR, St-Pierre G, Sato S, Singh BN. Trichomonas vaginalis lipophosphoglycan exploits binding to Galectin-1 and -3 to modulate epithelial immunity. J Biol. 2015;Chem doi: 10.1074/jbc.M115.651497. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Bastida-Corcuera FD, Singh BN, Gray GC, Stamper PD, Davuluri M, Schlangen K, Corbeil RR, Corbeil LB. Antibodies to Trichomonas vaginalis surface glycolipid. Sex Transm Infec. 2013;89[6]:467–472. doi: 10.1136/sextrans-2012-051013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Fichorova RN, Trifonova RT, Gilbert RO, Costello CE, Hayes GR, Lucas JJ, Singh BN. Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun. 2006;74[10]:5773–5779. doi: 10.1128/iai.00631-06. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Shiflett AM, Johnson PJ. Mitochondrion-related organelles in eukaryotic protists. Annu Rev Microbiol. 2010;64:409–429. doi: 10.1146/annurev.micro.62.081307.162826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Engbring JA, Alderete JF. Characterization of Trichomonas vaginalis AP33 adhesin and cell surface interactive domains. . Microbiology [Reading, England] . 1998;144[Pt 11]:3011–3018. doi: 10.1099/00221287-144-11-3011. [PubMed] [CrossRef] [Google Scholar]

113. Garcia AF, Alderete J. Characterization of the Trichomonas vaginalis surface-associated AP65 and binding domain interacting with trichomonads and host cells. BMC microbiology. 2007;7:116. doi: 10.1186/1471-2180-7-116. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Alderete JF, Millsap KW, Lehker MW, Benchimol M. Enzymes on microbial pathogens and Trichomonas vaginalis: molecular mimicry and functional diversity. Cell Microbiol. 2001;3[6]:359–370. doi: 10.1046/j.1462-5822.2001.00126.x. [PubMed] [CrossRef] [Google Scholar]

115. Hirt RP, Noel CJ, Sicheritz-Ponten T, Tachezy J, Fiori PL. Trichomonas vaginalis surface proteins: a view from the genome. Trends Parasitol. 2007;23[11]:540–547. doi: 10.1016/j.pt.2007.08.020. [PubMed] [CrossRef] [Google Scholar]

116. Moreno-Brito V, Yanez-Gomez C, Meza-Cervantez P, Avila-Gonzalez L, Rodriguez MA, Ortega-Lopez J, Gonzalez-Robles A, Arroyo R. A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron. Cell Microbiol. 2005;7[2]:245–258. doi: 10.1111/j.1462-5822.2004.00455.x. [PubMed] [CrossRef] [Google Scholar]

117. Arroyo R, Engbring J, Alderete JF. Molecular basis of host epithelial cell recognition by Trichomonas vaginalis. Mol Microbiol. 1992;6[7]:853–862. doi: 10.1111/j.1365-2958.1992.tb01536.x. [PubMed] [CrossRef] [Google Scholar]

118. Addis MF, Rappelli P, Fiori PL. Host and tissue specificity of Trichomonas vaginalis is not mediated by its known adhesion proteins. Infect Immun. 2000;68[7]:4358–4360. doi: 10.1128/iai.68.7.4358-4360.2000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Ardalan S, Lee BC, Garber GE. Trichomonas vaginalis: the adhesins AP51 and AP65 bind heme and hemoglobin. Exp Parasitol. 2009;121[4]:300–306. doi: 10.1016/j.exppara.2008.11.012. [PubMed] [CrossRef] [Google Scholar]

120. Lehker MW, Arroyo R, Alderete JF. The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. J Exp Med. 1991;174[2]:311–318. doi: 10.1084/jem.174.2.311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Garcia AF, Chang TH, Benchimol M, Klumpp DJ, Lehker MW, Alderete JF. Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Mol Microbiol. 2003;47[5]:1207–1224. doi: 10.1046/j.1365-2958.2003.03366.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Noel CJ, Diaz N, Sicheritz-Ponten T, Safarikova L, Tachezy J, Tang P, Fiori PL, Hirt RP. Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics. BMC genomics. 2010;11:99. doi: 10.1186/1471-2164-11-99. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Pereira-Neves A, Benchimol M. Phagocytosis by Trichomonas vaginalis: new insights. Biol Cell. 2007;99[2]:87–101. doi: 10.1042/bc20060084. [PubMed] [CrossRef] [Google Scholar]

124. Rendon-Maldonado JG, Espinosa-Cantellano M, Gonzalez-Robles A, Martinez-Palomo A. Trichomonas vaginalis: in vitro phagocytosis of lactobacilli, vaginal epithelial cells, leukocytes, and erythrocytes. Exp Parasitol. 1998;89[2]:241–250. doi: 10.1006/expr.1998.4297. [PubMed] [CrossRef] [Google Scholar]

125. Hernandez-Gutierrez R, Avila-Gonzalez L, Ortega-Lopez J, Cruz-Talonia F, Gomez-Gutierrez G, Arroyo R. Trichomonas vaginalis: characterization of a 39-kDa cysteine proteinase found in patient vaginal secretions. Exp Parasitol. 2004;107[3-4]:125–135. doi: 10.1016/j.exppara.2004.05.004. [PubMed] [CrossRef] [Google Scholar]

126. Alderete JF, Provenzano D, Lehker MW. Iron mediates Trichomonas vaginalis resistance to complement lysis. Microb Pathog. 1995;19[2]:93–103. doi: 10.1006/mpat.1995.0049. [PubMed] [CrossRef] [Google Scholar]

127. Ryu JS, Kang JH, Jung SY, Shin MH, Kim JM, Park H, Min DY. Production of interleukin-8 by human neutrophils stimulated with Trichomonas vaginalis. Infect Imm. 2004;72[3]:1326–1332. doi: 10.1128/iai.72.3.1326-1332.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Frasson A, Carli G, Bonan C, Tasca T. Involvement of purinergic signaling on nitric oxide production by neutrophils stimulated with Trichomonas vaginalis. Purinergic Signal. 2012;8[1]:1–9. doi: 10.1007/s11302-011-9254-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Yadav M, Gupta I, Malla N. Kinetics of immunoglobulin G, M, A and IgG subclass responses in experimental intravaginal trichomoniasis: prominence of IgG1 response. Parasite Immunol. 2005;27[12]:461–467. doi: 10.1111/j.1365-3024.2005.00800.x. [PubMed] [CrossRef] [Google Scholar]

130. Imam NF, Eassa AH, Shoeib EY, Abo-Raia GY. Antibody isotypes in urethral swabs of symptomatic and asymptomatic men infected with Trichomonas vaginalis. J Egypt Soc Parasitol. 2007;37[3]:977–988. [PubMed] [Google Scholar]

131. Cudmore SL, Delgaty KL, Hayward-McClelland SF, Petrin DP, Garber GE. Treatment of infections caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev. 2004;17[4]:783–793. doi: 10.1128/CMR.17.4.783-793.2004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Rappelli P, Carta F, Delogu G, Addis MF, Dessi D, Cappuccinelli P, Fiori PL. Mycoplasma hominis and Trichomonas vaginalis symbiosis: multiplicity of infection and transmissibility of M. hominis to human cells. . Arch Microbiol. 2001;175[1]:70–74. doi: 10.1007/s002030000240. [PubMed] [CrossRef] [Google Scholar]

133. Butler SE, Augostini P, Secor WE. Mycoplasma hominis infection of Trichomonas vaginalis is not associated with metronidazole-resistant trichomoniasis in clinical isolates from the United States. Parasitol Res. 2010;107[4]:1023–1027. doi: 10.1007/s00436-010-1975-y. [PubMed] [CrossRef] [Google Scholar]

134. Becker DL, Santos O, Frasson AP, Rigo GV, Macedo AJ, Tasca T. High rates of double-stranded RNA viruses and Mycoplasma hominis in Trichomonas vaginalis clinical isolates in South Brazil. Infect Genet Evol. 2015;34[181-187] doi: 10.1016/j.meegid.2015.07.005. [PubMed] [CrossRef] [Google Scholar]

135. Xiao JC, Xie LF, Fang SL, Gao MY, Zhu Y, Song LY, Zhong HM, Lun ZR. Symbiosis of Mycoplasma hominis in Trichomonas vaginalis may link metronidazole resistance in vitro. Parasitol Res. 2006;100[1]:123–130. doi: 10.1007/s00436-006-0215-y. [PubMed] [CrossRef] [Google Scholar]

136. Vancini RG, Pereira-Neves A, Borojevic R, Benchimol M. Trichomonas vaginalis harboring Mycoplasma hominis increases cytopathogenicity in vitro. Eur J Clin Microbiol Infect Dis. 2008;27[4]:259–267. doi: 10.1007/s10096-007-0422-1. [PubMed] [CrossRef] [Google Scholar]

137. Fiori PL, Diaz N, Cocco AR, Rappelli P, Dessi D. Association of Trichomonas vaginalis with its symbiont Mycoplasma hominis synergistically upregulates the in vitro proinflammatory response of human monocytes. Sex Transm Infect. 2013;89[6]:449–454. doi: 10.1136/sextrans-2012-051006. [PubMed] [CrossRef] [Google Scholar]

138. Goodman RP, Freret TS, Kula T, Geller AM, Talkington MW, Tang-Fernandez V, Suciu O, Demidenko AA, Ghabrial SA, Beach DH, Singh BN, Fichorova RN, Nibert ML. Clinical isolates of Trichomonas vaginalis concurrently infected by strains of up to four Trichomonasvirus species [Family Totiviridae]. J Virol. 2011;85[9]:4258–4270. doi: 10.1128/jvi.00220-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Kim JW, Chung PR, Hwang MK, Choi EY. Double-stranded RNA virus in Korean isolate IH-2 of Trichomonas vaginalis. Korean J Parasitol. 2007;45[2]:87–94. doi: 10.3347/kjp.2007.45.2.87. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Weber B, Mapeka TM, Maahlo MA, Hoosen AA. Double stranded RNA virus in South African Trichomonas vaginalis isolates. J Clin Pathol. 2003;56[7]:542–543. doi: 10.1136/jcp.56.7.542. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Khoshnan A, Alderete JF. Trichomonas vaginalis with a double-stranded RNA virus has upregulated levels of phenotypically variable immunogen mRNA. J Virology. 1994;68[6]:4035–4038. [PMC free article] [PubMed] [Google Scholar]

142. Fichorova RN, Lee Y, Yamamoto HS, Takagi Y, Hayes GR, Goodman RP, Chepa-Lotrea X, Buck OR, Murray R, Kula T, Beach DH, Singh BN, Nibert ML. Endobiont viruses sensed by the human host - beyond conventional antiparasitic therapy. PloS one. 2012;7[11]:e48418. doi: 10.1371/journal.pone.0048418. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Conrad MD, Bradic M, Warring SD, Gorman AW, Carlton JM. Getting trichy: tools and approaches to interrogating Trichomonas vaginalis in a post-genome world. Trends Parasitol. 2013;29[1]:17–25. doi: 10.1016/j.pt.2012.10.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Huang KY, Chien KY, Lin YC, Hsu WM, Fong IK, Huang PJ, Yueh YM, Gan RR, Tang P. A proteome reference map of Trichomonas vaginalis. Parasitol Res. 2009;104[4]:927–933. doi: 10.1007/s00436-008-1274-z. [PubMed] [CrossRef] [Google Scholar]

145. Huang KY, Chen YY, Fang YK, Cheng WH, Cheng CC, Chen YC, Wu TE, Ku FM, Chen SC, Lin R, Tang P. Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim Biophys Acta. 2014;1840[1]:53–64. doi: 10.1016/j.bbagen.2013.08.008. [PubMed] [CrossRef] [Google Scholar]

146. Cheng WH, Huang KY, Huang PJ, Hsu JH, Fang YK, Chiu CH, Tang P. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion. Parasit Vectors. 2015;8:393. doi: 10.1186/s13071-015-1000-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Horvathova L, Safarikova L, Basler M, Hrdy I, Campo NB, Shin JW, Huang KY, Huang PJ, Lin R, Tang P, Tachezy J. Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biol Evol. 2012;4[10]:1017–1029. doi: 10.1093/gbe/evs078. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Fang YK, Huang KY, Huang PJ, Lin R, Chao M, Tang P. Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis. J Microbiol Immunol Infect. 2015;48[6]:662–675. doi: 10.1016/j.jmii.2014.07.013. [PubMed] [CrossRef] [Google Scholar]

149. Huang KY, Huang PJ, Ku FM, Lin R, Alderete JF, Tang P. Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun. 2012;80[11]:3900–3911. doi: 10.1128/iai.00611-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Yeh YM, Huang KY, Richie Gan RC, Huang HD, Wang TC, Tang P. Phosphoproteome profiling of the sexually transmitted pathogen Trichomonas vaginalis. J Microbiol Immunol Infect. 2013;46[5]:366–373. doi: 10.1016/j.jmii.2012.07.010. [PubMed] [CrossRef] [Google Scholar]

151. Huang KY, Ku FM, Cheng WH, Lee CC, Huang PJ, Chu LJ, Cheng CC, Fang YK, Wu HH, Tang P. Novel insights into the molecular events linking to cell death induced by tetracycline in the amitochondriate protozoan Trichomonas vaginalis. Antimicrob Agents Chemother. 2015;59[11]:6891–6903. doi: 10.1128/aac.01779-15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Forna F, Gulmezoglu AM. Interventions for treating trichomoniasis in women. Cochrane Database Syst Rev. 2003;2:Cd000218. doi: 10.1002/14651858.cd000218. [PubMed] [CrossRef] [Google Scholar]

153. Sherrard J, Ison C, Moody J, Wainwright E, Wilson J, Sullivan A. United Kingdom National Guideline on the Management of Trichomonas vaginalis 2014. Int J STD AIDS. 2014;25[8]:541–549. doi: 10.1177/0956462414525947. [PubMed] [CrossRef] [Google Scholar]

154. Spence MR, Harwell TS, Davies MC, Smith JL. The minimum single oral metronidazole dose for treating trichomoniasis: a randomized, blinded study. . Obstet Gynecol. 1997;89[5 Pt 1]:699–703. doi: 10.1016/s0029-7844[97]81437-8. [PubMed] [CrossRef] [Google Scholar]

155. Kissinger P, Mena L, Levison J, Clark RA, Gatski M, Henderson H, Schmidt N, Rosenthal SL, Myers L, Martin DH. A randomized treatment trial: single versus 7-day dose of metronidazole for the treatment of Trichomonas vaginalis among HIV-infected women. J Acquir Immune Defic Syndr. 2010;55[5]:565–571. doi: 10.1097/QAI.0b013e3181eda955. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Tidwell BH, Lushbaugh WB, Laughlin MD, Cleary JD, Finley RW. A double-blind placebo-controlled trial of single-dose intravaginal versus single-dose oral metronidazole in the treatment of trichomonal vaginitis. J Infect Dis. 1994;170[1]:242–246. doi: 10.1093/infdis/170.1.242. [PubMed] [CrossRef] [Google Scholar]

157. Schwebke JR, Desmond RA. Tinidazole vs metronidazole for the treatment of bacterial vaginosis. Am J Obstet Gynecol. 2011;204[3]:211.e211–211.e216. doi: 10.1016/j.ajog.2010.10.898. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Pearlman MD, Yashar C, Ernst S, Solomon W. An incremental dosing protocol for women with severe vaginal trichomoniasis and adverse reaction to metronidazole. Am J Obstet Gynecol. 1996;174[3]:934–936. doi: 10.1016/s0002-9378[96]70329-0. [PubMed] [CrossRef] [Google Scholar]

159. Burtin P, Taddio A, Ariburnu O, Einarson TR, Koren G. Safety of metronidazole in pregnancy: a meta-analysis. Am J Obstet Gynecol . 1995;172[2 Pt 1]:525–529. doi: 10.1016/0002-9378[95]90567-7. [PubMed] [CrossRef] [Google Scholar]

160. Piper JM, Mitchel EF, Ray WA. Prenatal use of metronidazole and birth defects: no association. Obstet Gynecol. 1993;82[3]:348–352. [PubMed] [Google Scholar]

161. Sheehy O, Santos F, Ferreira E, Berard A. The use of metronidazole during pregnancy: a review of evidence. Curr Drug Saf. 2015;10[2]:170–179. doi: 10.2174/157488631002150515124548. [PubMed] [CrossRef] [Google Scholar]

162. Sherrard J, Ison C, Moody J, Wainwright E, Wilson J, Sullivan A. United Kingdom National Guideline on the Management of Trichomonas vaginalis 2014. Int J STD AIDS. 2014;25[8]:541–549. doi: 10.1177/0956462414525947. [PubMed] [CrossRef] [Google Scholar]

163. Das S, Huengsberg M, Shahmanesh M. Treatment failure of vaginal trichomoniasis in clinical practice. Int J STD AIDS. 2005;16[4]:284–286. doi: 10.1258/0956462053654258. [PubMed] [CrossRef] [Google Scholar]

164. Kirkcaldy RD, Augostini P, Asbel LE, Bernstein KT, Kerani RP, Mettenbrink CJ, Pathela P, Schwebke JR, Secor WE, Workowski KA, Davis D, Braxton J, Weinstock HS. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009-2010. Emerg Infect Dis. 2012;18[6]:939–943. doi: 10.3201/eid1806.111590. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Pal D, Banerjee S, Cui J, Schwartz A, Ghosh SK, Samuelson J. Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole [nitroreductases] and inactivate metronidazole [nitroimidazole reductases]. Antimicrob Agents Chemother. 2009;53[2]:458–464. doi: 10.1128/aac.00909-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Kulda J. Trichomonads, hydrogenosomes and drug resistance. Int J Parasitol. 1999;29[2]:199–212. doi: 10.1016/s0020-7519[98]00155-6. [PubMed] [CrossRef] [Google Scholar]

167. Leitsch D, Drinic M, Kolarich D, Duchene M. Down-regulation of flavin reductase and alcohol dehydrogenase-1 [ADH1] in metronidazole-resistant isolates of Trichomonas vaginalis. Mol Biochem Parasitol. 2012;183[2]:177–183. doi: 10.1016/j.molbiopara.2012.03.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Leitsch D, Kolarich D, Binder M, Stadlmann J, Altmann F, Duchene M. Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. . Mol Microbiol. 2009;72[2]:518–536. doi: 10.1111/j.1365-2958.2009.06675.x. [PubMed] [CrossRef] [Google Scholar]

169. Leitsch D, Kolarich D, Duchene M. The flavin inhibitor diphenyleneiodonium renders Trichomonas vaginalis resistant to metronidazole, inhibits thioredoxin reductase and flavin reductase, and shuts off hydrogenosomal enzymatic pathways. Mol Biochem Parasitol. 2010;171[1]:17–24. doi: 10.1016/j.molbiopara.2010.01.001. [PubMed] [CrossRef] [Google Scholar]

170. Yarlett N, Yarlett NC, Lloyd D. Metronidazole-resistant clinical isolates of Trichomonas vaginalis have lowered oxygen affinities. Mol Biochem Parasitol. 1986;19[2]:111–116. doi: 10.1016/0166-6851[86]90109-x. [PubMed] [CrossRef] [Google Scholar]

171. Vieira PB, Giordani RB, Macedo AJ, Tasca T. Natural and synthetic compound anti-Trichomonas vaginalis: an update review. Parasitol Res. 2015;114[4]:1249–1261. doi: 10.1007/s00436-015-4340-3. [PubMed] [CrossRef] [Google Scholar]

172. Leitsch D, Janssen BD, Kolarich D, Johnson PJ, Duchene M. Trichomonas vaginalis flavin reductase 1 and its role in metronidazole resistance. Mol Microbiol. 2014;91[1]:198–208. doi: 10.1111/mmi.12455. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Paulish-Miller TE, Augostini P, Schuyler JA, Smith WL, Mordechai E, Adelson ME, Gygax SE, Secor WE, Hilbert DW. Trichomonas vaginalis metronidazole resistance is associated with single nucleotide polymorphisms in the nitroreductase genes ntr4Tv and ntr6Tv. Antimicrob Agents Chemother. 2014;58[5]:2938–2943. doi: 10.1128/aac.02370-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Goodhew EB, Secor WE. Drug library screening against metronidazole-sensitive and metronidazole-resistant Trichomonas vaginalis isolates. Sex Transm Infect. 2013;89[6]:479–484. doi: 10.1136/sextrans-2013-051032. [PubMed] [CrossRef] [Google Scholar]

175. Blaha C, Duchêne M, Aspöck H, Walochnik J. In vitro activity of hexadecylphosph ocholine [miltefosine] against metronidazole-resistant and -susceptible strains of Trichomonas vaginalis. J Antimicrob Chemother. 2006;57[2]:273–278. doi: 10.1093/jac/dki417. [PubMed] [CrossRef] [Google Scholar]

176. Rocha DA, de Andrade Rosa I, de Souza W, Benchimol M. Evaluation of the effect of miltefosine on Trichomonas vaginalis. Parasitol Res. 2014;113[3]:1041–1047. doi: 10.1007/s00436-013-3738-z. [PubMed] [CrossRef] [Google Scholar]

177. Kranzler M, Syrowatka M, Leitsch D, Winnips C, Walochnik J. Pentamycin shows high efficacy against Trichomonas vaginalis. Int J Antimicrob Agents. 2015;45[4]:434–437. doi: 10.1016/j.ijantimicag.2014.12.024. [PubMed] [CrossRef] [Google Scholar]

178. Fernandez-Romero JA, Deal C, Herold BC, Schiller J, Patton D, Zydowsky T, Romano J, Petro CD, Narasimhan M. Multipurpose prevention technologies: the future of HIV and STI protection. Trends Microbiol. 2015;23[7]:429–436. doi: 10.1016/j.tim.2015.02.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Aburel E, Zervos G, Titea V, Pana S. Immunological and therapeutic investiations in vaginal trichomoniasis. Rum Med Rev. 1963;7:13–19. [PubMed] [Google Scholar]

180. Alderete JF. Does lactobacillus vaccine for trichomoniasis, Solco Trichovac, induce antibody reactive with Trichomonas vaginalis? Genitourin Med. 1988;64[2]:118–123. doi: 10.1136/sti.64.2.118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Smith J, Garber GE. Current status and prospects for development of a vaccine against Trichomonas vaginalis infections. Vaccine. 2014;32[14]:1588–1594. doi: 10.1016/j.vaccine.2013.07.050. [PubMed] [CrossRef] [Google Scholar]

182. Kulda J. In: Honigberg BM, editor Trichomonads parasitic in humans. New York: Springer Verlag; 1990. Employment of experimental animals in studies of Trichomonas vaginalis infection. pp. 112–154. [CrossRef] [Google Scholar]

183. Patton DL, Sweeney YT, Agnew KJ, Balkus JE, Rabe LK, Hillier SL. Development of a nonhuman primate model for Trichomonas vaginalis infection. . Vaccine. 2006;33[12]:743–746. doi: 10.1097/01.olq.0000218871.89901.61. [PubMed] [CrossRef] [Google Scholar]

Can you be exposed to trich and not get it?

Trichomoniasis is a sexually transmitted infection, meaning that you can only get it if you partake in sexual activity with an infected partner. However, keep in mind that the infection typically doesn't present symptoms in most people who have it.

What causes trichomoniasis in females?

Trichomoniasis is caused by a one-celled protozoan, a type of tiny parasite called Trichomonas vaginalis. The parasite passes between people during genital contact, including vaginal, oral or anal sex. The infection can be passed between men and women, women, and sometimes men.

Are most females suffering from trichomoniasis asymptomatic?

The infection is asymptomatic in at least 50% of women and 70-80% of men. Symptomatic trichomoniasis presents with vaginal or urethral discharge, pelvic pain, dysuria [painful urination], and itching of the genitals.

Chủ Đề