Which is an example of sensory adaptation?

1. Webster MA. Adaptation and visual coding. J Vis. 2011;11(3):1–23. [Google Scholar]

2. Clifford CW, Webster MA, Stanley GB, Stocker AA, Kohn A, Sharpee TO, Schwartz O. Visual adaptation: neural, psychological and computational aspects. Vision Research. 2007;47:3125–31. doi: 10.1016/j.visres.2007.08.023. [PubMed] [CrossRef] [Google Scholar]

3. Gibson JJ, Radner M. Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. Journal of Experimental Psychology. 1937;20:453–67. doi: 10.1037/h0059826. [CrossRef] [Google Scholar]

4. Wohlgemuth A. On the aftereffect of seen movement. British Journal of Psychology Monograph Supplement. 1911;1:1–117. [Google Scholar]

5. Stockman A, Langendorfer M, Smithson HE, Sharpe LT. Human cone light adaptation: from behavioral measurements to molecular mechanisms. J Vis. 2006;6:1194–213. doi: 10.1167/6.11.5. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/717960368

6. Graham NV. Visual Pattern Analyzers. Oxford: Oxford University Press; 1989. [CrossRef] [Google Scholar]

7. Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195:215–43. [PMC free article] [PubMed] [Google Scholar]

8. Blake R, Overton R, Lema-Stern S. Interocular transfer of visual aftereffects. J Exp Psychol Hum Percept Perform. 1981;7:367–81. doi: 10.1037/0096-1523.7.2.367. [PubMed] [CrossRef] [Google Scholar]

9. Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991;1:1–47. doi: 10.1093/cercor/1.1.1-a. [PubMed] [CrossRef] [Google Scholar]

10. Clifford CWG, Rhodes G. Fitting the Mind to the World: Adaptation and Aftereffects in High-Level Vision, Advances in Visual Cognition Series, Volume 2. Oxford: Oxford University Press; 2005. [Google Scholar]

11. Leopold DA, O'Toole AJ, Vetter T, Blanz V. Prototype-referenced shape encoding revealed by high-level aftereffects. Nature Neuroscience. 2001;4:89–94. doi: 10.1038/82947. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/717960369

12. Webster MA, Kaping D, Mizokami Y, Duhamel P. Adaptation to natural facial categories. Nature. 2004;428:557–61. doi: 10.1038/nature02420. [PubMed] [CrossRef] [Google Scholar]

13. Jordan H, Fallah M, Stoner GR. Adaptation of gender derived from biological motion. Nature Neuroscience. 2006;9:738–9. doi: 10.1038/nn1710. [PubMed] [CrossRef] [Google Scholar]

14. Troje NF, Sadr J, Geyer H, Nakayama K. Adaptation aftereffects in the perception of gender from biological motion. Journal of Vision. 2006;6:850–7. doi: 10.1167/6.8.7. [PubMed] [CrossRef] [Google Scholar]

15. Fang F, He S. Viewer-centered object representation in the human visual system revealed by viewpoint aftereffects. Neuron. 2005;45:793–800. doi: 10.1016/j.neuron.2005.01.037. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/717960370

16. Greene MR, Oliva A. High-level aftereffects to global scene properties. J Exp Psychol Hum Percept Perform. 2010;36:1430–42. doi: 10.1037/a0019058. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/717960371

17. Motoyoshi I, Nishida S, Sharan L, Adelson EH. Image statistics and the perception of surface qualities. Nature. 2007;447:206–9. doi: 10.1038/nature05724. [PubMed] [CrossRef] [Google Scholar]

18. Suzuki S. High-level pattern coding revealed by brief shape aftereffects. In: Clifford C, Rhodes G, editors. Fitting the Mind to the World: Adaptation and Aftereffects in High-Level Vision, Advances in Visual Cognition Series, Volume 2. Oxford: Oxford University Press; 2005. [Google Scholar]

20. Webster MA, MacLeod DIA. Visual adaptation and face perception. Philos Trans R Soc Lond B Biol Sci. 2011;366:1702–25. doi: 10.1098/rstb.2010.0360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Clifford CWG. Perceptual adaptation: motion parallels orientation. Trends in Cognitive Sciences. 2002;6:136–43. doi: 10.1016/S1364-6613(00)01856-8. [PubMed] [CrossRef] [Google Scholar]

23. Kohn A, Movshon JA. Neuronal adaptation to visual motion in area MT of the macaque. Neuron. 2003;39:681–91. doi: 10.1016/S0896-6273(03)00438-0. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/1022271

24. Xu H, Dayan P, Lipkin RM, Qian N. Adaptation across the cortical hierarchy: Low-level curve adaptation affects high-level facial-expression judgments. Journal of Neuroscience. 2008;28:3374–83. doi: 10.1523/JNEUROSCI.0182-08.2008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Dickinson JE, Almeida RA, Bell J, Badcock DR. Global shape aftereffects have a local substrate: A tilt aftereffect field. J Vis. 2010;10:5. doi: 10.1167/10.13.5. [PubMed] [CrossRef] [Google Scholar]

27. Olveczky BP, Baccus SA, Meister M. Retinal adaptation to object motion. Neuron. 2007;56:689–700. doi: 10.1016/j.neuron.2007.09.030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Chubb C, Sperling G, Solomon JA. Texture interactions determine perceived contrast. Proc Natl Acad Sci U S A. 1989;86:9631–5. doi: 10.1073/pnas.86.23.9631. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Afraz A, Cavanagh P. The gender-specific face aftereffect is based in retinotopic not spatiotopic coordinates across several natural image transformations. Journal of Vision. 2009;9(10):11–7. [PMC free article] [PubMed] [Google Scholar]

31. Watson TL, Clifford CWG. Pulling faces: An investigation of the face-distortion aftereffect. Perception. 2003;32:1109–16. doi: 10.1068/p5082. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/717960374

32. Ghuman AS, McDaniel JR, Martin A. Face Adaptation without a Face. Current Biology. 2010;20:32–6. doi: 10.1016/j.cub.2009.10.077. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Winawer J, Huk AC, Boroditsky L. A motion aftereffect from still photographs depicting motion. Psychol Sci. 2008;19:276–83. doi: 10.1111/j.1467-9280.2008.02080.x. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/717960375

34. Dils AT, Boroditsky L. Visual motion aftereffect from understanding motion language. Proc Natl Acad Sci U S A. 2010;107:16396–400. doi: 10.1073/pnas.1009438107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Bestelmeyer PEG, Jones BC, DeBruine LM, Little AC, Perrett DI, Schneider A, Welling LLM, Conway CA. Sex-contingent face aftereffects depend on perceptual category rather than structural encoding. Cognition. 2008;107:353–65. doi: 10.1016/j.cognition.2007.07.018. [PubMed] [CrossRef] [Google Scholar]

36. Rotshtein P, Henson RN, Treves A, Driver J, Dolan RJ. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nature Neuroscience. 2005;8:107–13. doi: 10.1038/nn1370. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/1023211

37. Moradi F, Koch C, Shimojo S. Face adaptation depends on seeing the face. Neuron. 2005;45:169–75. doi: 10.1016/j.neuron.2004.12.018. [PubMed] [CrossRef] [Google Scholar]

38. He D, Kersten D, Fang F. Opposite modulation of high- and low-level visual aftereffects by perceptual grouping. Current Biology. 2012;22:1040–5. doi: 10.1016/j.cub.2012.04.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Valentine T, Endo M. Towards an exemplar model of face processing: the effects of race and distinctiveness. Quarterly Journal of Experimental Psychology A. 1992;44:671–703. doi: 10.1080/14640749208401305. [PubMed] [CrossRef] [Google Scholar]

41. Blakemore C, Campbell FW. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. Journal of Physiology. 1969;203:237–60. [PMC free article] [PubMed] [Google Scholar]

42. Webster MA. Human colour perception and its adaptation. Network: Computation in Neural Systems. 1996;7:587–634. doi: 10.1088/0954-898X/7/4/002. [CrossRef] [Google Scholar]

43. Rhodes G, Robbins R, Jaquet E, McKone E, Jeffery L, Clifford CWG. Adaptation and face perception - how aftereffects implicate norm based coding of faces. In: Clifford CWG, Rhodes G, editors. Fitting the Mind to the World: Adaptation and Aftereffects in High-Level Vision. Oxford: Oxford University Press; 2005. pp. 213–40. [CrossRef] [Google Scholar]

44. Robbins R, McKone E, Edwards M. Aftereffects for face attributes with different natural variability: Adapter position effects and neural models. Journal of Experimental Psychology-Human Perception and Performance. 2007;33:570–92. doi: 10.1037/0096-1523.33.3.570. [PubMed] [CrossRef] [Google Scholar]

45. Rhodes G, Jeffery L. Adaptive norm-based coding of facial identity. Vision Research. 2006;46:2977–87. doi: 10.1016/j.visres.2006.03.002. [PubMed] [CrossRef] [Google Scholar]

46. Webster MA, MacLin OH. Figural aftereffects in the perception of faces. Psychonomic Bulletin and Review. 1999;6:647–53. doi: 10.3758/BF03212974. [PubMed] [CrossRef] [Google Scholar]

47. Zhao C, Series P, Hancock PJ, Bednar JA. Similar neural adaptation mechanisms underlying face gender and tilt aftereffects. Vision Res. 2011;51:2021–30. doi: 10.1016/j.visres.2011.07.014. [PubMed] [CrossRef] [Google Scholar]

48. Storrs KH, Arnold DK. Not all face aftereffects are equal. Vision Research. in press. [PubMed] [Google Scholar]

49. Hegde J. How reliable is the pattern adaptation technique? A modeling study. J Neurophysiol. 2009;102:2245–52. doi: 10.1152/jn.00216.2009. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/6535957

50. Mur M, Ruff DA, Bodurka J, Bandettini PA, Kriegeskorte N. Face-identity change activation outside the face system: “release from adaptation” may not always indicate neuronal selectivity. Cereb Cortex. 2010;20:2027–42. doi: 10.1093/cercor/bhp272. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Barlow HB. A theory about the functional role and synaptic mechanism of visual aftereffects. In: Blakemore C, editor. Visual Coding and Efficiency. Cambridge: Cambridge University Press; 1990. pp. 363–75. [Google Scholar]

52. Elliott SL, Georgeson MA, Webster MA. Response normalization and blur adaptation: Data and multi-scale model. J Vis. 2011;11 [PMC free article] [PubMed] [Google Scholar]

53. Kohn A. Visual adaptation: physiology, mechanisms, and functional benefits. J Neurophysiol. 2007;97:3155–64. doi: 10.1152/jn.00086.2007. [PubMed] [CrossRef] [Google Scholar]

54. Chopin A, Mamassian P. Predictive properties of visual adaptation. Curr Biol. 22:622–6. doi: 10.1016/j.cub.2012.02.021. [PubMed] [CrossRef] [Google Scholar]

55. Ohzawa I, Sclar G, Freeman RD. Contrast gain control in the cat visual cortex. Nature. 1982;298:266–8. doi: 10.1038/298266a0. [PubMed] [CrossRef] [Google Scholar]

56. Greenlee MW, Heitger F. The functional role of contrast adaptation. Vision Res. 1988;28:791–7. doi: 10.1016/0042-6989(88)90026-0. [PubMed] [CrossRef] [Google Scholar]

57. McDermott KC, Malkoc G, Mulligan JB, Webster MA. Adaptation and visual salience. J Vis. 2010;10:17. doi: 10.1167/10.13.17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Ranganath C, Rainer G. Neural mechanisms for detecting and remembering novel events. Nat Rev Neurosci. 2003;4:193–202. doi: 10.1038/nrn1052. [PubMed] [CrossRef] [Google Scholar]

59. Foster DH. Color constancy. Vision Res. 2011;51:674–700. doi: 10.1016/j.visres.2010.09.006. [PubMed] [CrossRef] [Google Scholar]

60. Wark B, Lundstrom BN, Fairhall A. Sensory adaptation. Curr Opin Neurobiol. 2007;17:423–9. doi: 10.1016/j.conb.2007.07.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Wainwright MJ. Visual adaptation as optimal information transmission. Vision Res. 1999;39:3960–74. doi: 10.1016/S0042-6989(99)00101-7. [PubMed] [CrossRef] [Google Scholar]

62. Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, Miller KD. Adaptive filtering enhances information transmission in visual cortex. Nature. 2006;439:936–42. doi: 10.1038/nature04519. [PMC free article] [PubMed] [CrossRef] [Google Scholar] www.f1000.com/1031245

64. Rieke F, Rudd ME. The challenges natural images pose for visual adaptation. Neuron. 2009;64:605–16. doi: 10.1016/j.neuron.2009.11.028. [PubMed] [CrossRef] [Google Scholar]

65. Srinivasan MV, Laughlin SB, Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci. 1982;216:427–59. doi: 10.1098/rspb.1982.0085. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/7433956

66. Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu Rev Neurosci. 2001;24:1193–216. doi: 10.1146/annurev.neuro.24.1.1193. [PubMed] [CrossRef] [Google Scholar]

67. Barlow HB, Macleod DI, van Meeteren A. Adaptation to gratings: no compensatory advantages found. Vision Research. 1976;16:1043–5. doi: 10.1016/0042-6989(76)90241-8. [PubMed] [CrossRef] [Google Scholar]

68. Clifford CWG, Wyatt AM, Arnold DH, Smith ST, Wenderoth P. Orthogonal adaptation improves orientation discrimination. Vision Research. 2001;41:151–9. doi: 10.1016/S0042-6989(00)00248-0. [PubMed] [CrossRef] [Google Scholar]

69. Westheimer G, Gee A. Orthogonal adaptation and orientation discrimination. Vision Research. 2002;42:2339–43. doi: 10.1016/S0042-6989(02)00192-X. [PubMed] [CrossRef] [Google Scholar]

70. Rhodes G, Watson TL, Jeffery L, Clifford CW. Perceptual adaptation helps us identify faces. Vision Research. 2010;50:963–8. doi: 10.1016/j.visres.2010.03.003. [PubMed] [CrossRef] [Google Scholar]

71. Ng M, Boynton GM, Fine I. Face adaptation does not improve performance on search or discrimination tasks. Journal of Vision. 2008;8(1):1–20. doi: 10.1167/8.1.1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Armann R, Jeffery L, Calder AJ, Rhodes G. Race-specific norms for coding face identity and a functional role for norms. J Vis. 2011;11:9. doi: 10.1167/11.13.9. [PubMed] [CrossRef] [Google Scholar]

73. Susilo T, McKone E, Edwards M. What shape are the neural response functions underlying opponent coding in face space? A psychophysical investigation. Vision Research. 2010;50:300–14. doi: 10.1016/j.visres.2009.11.016. [PubMed] [CrossRef] [Google Scholar]

74. Dennett H, Susilo T, McKone E. Face aftereffects predict individual differences in face recognition ability. Psychological Science. in press. [PubMed] [Google Scholar]

76. Zhang P, Bao M, Kwon M, He S, Engel SA. Effects of orientation-specific visual deprivation induced with altered reality. Curr Biol. 2009;19:1956–60. doi: 10.1016/j.cub.2009.10.018. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/717960379

78. Neitz J, Carroll J, Yamauchi Y, Neitz M, Williams DR. Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron. 2002;35:783–92. doi: 10.1016/S0896-6273(02)00818-8. [PubMed] [CrossRef] [Google Scholar]

79. Belmore SC, Shevell SK. Very-long-term and short-term chromatic adaptation: are their influences cumulative? Vision Res. 2010;51:362–6. doi: 10.1016/j.visres.2010.11.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Vul E, Krizay E, MacLeod DI. The McCollough effect reflects permanent and transient adaptation in early visual cortex. Journal of Vision. 2008;8(4):1–12. [PubMed] [Google Scholar]

81. Bao M, Engel SA. Distinct mechanism for long-term contrast adaptation. Proc Natl Acad Sci U S A. 2012;109:5898–903. doi: 10.1073/pnas.1113503109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 2006;4:e179. doi: 10.1371/journal.pbio.0040179. [PMC free article] [PubMed] [CrossRef] [Google Scholar] www.f1000.com/1032119

84. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108. doi: 10.1146/annurev-neuro-060909-153135. [PubMed] [CrossRef] [Google Scholar]

86. Yehezkel O, Sagi D, Sterkin A, Belkin M, Polat U. Learning to adapt: Dynamics of readaptation to geometrical distortions. Vision Res. 2010;50:1550–8. doi: 10.1016/j.visres.2010.05.014. [PubMed] [CrossRef] [Google Scholar] www.f1000.com/717960381

87. van Lier R, Vergeer M, Anstis S. Filling-in afterimage colors between the lines. Curr Biol. 2009;19:R323–4. doi: 10.1016/j.cub.2009.03.010. [PubMed] [CrossRef] [Google Scholar]

What is sensory adaptation quizlet?

Sensory adaptation. Occurs when sensory receptors change their sensitivity to the stimulus. Sensory adaptation. Distinguishes sensory stimuli that takes into account the only the stimuli strengths but also elements such as the Setting, physical state, mood, and attitude.

What does sensory adaptation mean?

Sensory Adaptation occurs when sensory receptors change their sensitivity to the stimulus. This phenomenon occurs in all senses, with the possible exception of the sense of pain.

What is an example of sensory adaptation for hearing?

In terms of hearing, our ears adapt to loud sound as it hits the small bones located in the inner ear. The loud sound leads the inner ear bone/s to contract. This contraction causes the reduction or delay of transmission of sound vibrations to the inner ear. Detection of the vibrations follows.

Which of the following is an example of sensory adaptation quizlet?

Which of the following is an example of sensory adaptation? When admiring the texture of a piece of fabric, Calvin usually runs his fingertips over the cloth's surface. He does this because: if the cloth were held motionless, sensory adaptation to its feel would quickly occur.