Based on the information presented, how does aldosterone most likely enter target cells?

  • Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020). Together with Lan, J. et al., this study provides one of two early crystal structures of the SARS-CoV-2 RBD–ACE2 complex, showing how the S protein recognizes its receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell https://doi.org/10.1016/j.cell.2020.02.058 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020). Together with Shang, J. et al., this study provides one of two early crystal structures of the SARS-CoV-2 RBD–ACE2 complex, revealing how the S protein recognizes its receptor.

    CAS  PubMed  Google Scholar 

  • Wang, Q. et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894–904 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003). This study identifies ACE2 as the receptor for SARS-CoV.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann, H. et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl Acad. Sci. USA 102, 7988–7993 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779–784 (2020). This article provides insight into the function and necessity of the S1–S2 furin-cleavage site for SARS-CoV-2 infection of human lung cells in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fehr, A. R. & Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1–23 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glowacka, I. et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 85, 4122–4134 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Matsuyama, S. et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84, 12658–12664 (2010). This study and those by Glowacka et al. (2011) and Shulla et al. (2011) are the first to demonstrate the importance of TMPRSS2 in SARS-CoV infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shulla, A. et al. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 85, 873–882 (2011).

    CAS  PubMed  Google Scholar 

  • Huang, I. C. et al. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J. Biol. Chem. 281, 3198–3203 (2006).

    CAS  PubMed  Google Scholar 

  • Simmons, G. et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl Acad. Sci. USA 102, 11876–11881 (2005). This study and that by Huang et al. (2006) are the first to identify the role of cathepsin L in processing of the SARS-CoV S protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayati, A., Kumar, R., Francis, V. & McPherson, P. S. SARS-CoV-2 infects cells following viral entry via clathrin-mediated endocytosis. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2021.100306 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue, Y. et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J. Virol. 81, 8722–8729 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369, 330–333 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison, S. C. Viral membrane fusion. Virology 479–480, 498–507 (2015).

    PubMed  Google Scholar 

  • Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020). Together with Walls et al. (2020), this study shows cryo-EM structures of the stabilized ectodomain S trimer of SARS-CoV-2, providing molecular insights into its membrane fusion machinery.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobeil, S. M. et al. D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep. 34, 108630 (2021).

    CAS  PubMed  Google Scholar 

  • Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, S. et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30, 343–355 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592 (2020). This study provides the first cryo-EM structure of the unmodified full-length S protein of SARS-CoV-2 in both the prefusion conformation and the postfusion conformation.

    CAS  PubMed  Google Scholar 

  • Bangaru, S. et al. Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science 370, 1089–1094 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J. et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 372, 525–530 (2021). This study provides the cryo-EM structure of the unmodified full-length SARS-CoV-2 S protein with the D614G mutation, supporting its role in stabilizing S1–S2 association.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turonova, B. et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science 370, 203–208 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ke, Z. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588, 498–502 (2020). This is one of the first reports on SARS-CoV-2 S trimers in situ on the virion surface imaged by cryo-EM and cryo-electron tomography, revealing their high-resolution structure, conformational flexibility and distribution.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, H. et al. Molecular architecture of the SARS-CoV-2 virus. Cell 183, 730–738 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C. et al. The architecture of inactivated SARS-CoV-2 with postfusion spikes revealed by cryo-EM and cryo-ET. Structure 28, 1218–1224 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel, F. & Herrler, G. Structural and functional analysis of the surface protein of human coronavirus OC43. Virology 195, 195–202 (1993).

    CAS  PubMed  Google Scholar 

  • Schultze, B., Gross, H. J., Brossmer, R. & Herrler, G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J. Virol. 65, 6232–6237 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krempl, C., Schultze, B., Laude, H. & Herrler, G. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J. Virol. 71, 3285–3287 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, H. et al. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat. Commun. 10, 3068 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 369, 650–655 (2020). This is one of the first reports showing that the RBD and the NTD are the two major neutralizing targets on the SARS-CoV-2 S trimer.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450–456 (2020).

    CAS  PubMed  Google Scholar 

  • Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27, 622–625 (2021).

    CAS  PubMed  Google Scholar 

  • Wu, K. et al. Serum neutralizing activity elicited by mRNA-1273 vaccine. N. Engl. J. Med. 384, 1468–1470 (2021).

    PubMed  Google Scholar 

  • Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature https://doi.org/10.1038/s41586-021-03324-6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature https://doi.org/10.1038/s41586-021-03398-2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Edara, V. V. et al. Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 variants. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2107799 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wall, E. C. et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet 397, 2331–2333 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature https://doi.org/10.1038/s41586-021-03777-9 (2021).

    Article  PubMed  Google Scholar 

  • Sheikh, A. et al. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet 397, 2461–2462 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowski, F., Preibisch, G., Gizinski, S., Kochanczyk, M. & Lipniacki, T. SARS-CoV-2 variant of concern 202012/01 has about twofold replicative advantage and acquires concerning mutations. Viruses https://doi.org/10.3390/v13030392 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tegally, H. et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438–443 (2021).

    CAS  PubMed  Google Scholar 

  • Voloch, C. M. et al. Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. J. Virol. https://doi.org/10.1128/JVI.00119-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tada, T. et al. SARS-CoV-2 lambda variant remains susceptible to neutralization by mRNA vaccine-elicited antibodies and convalescent serum. Preprint at bioRxiv https://doi.org/10.1101/2021.07.02.450959 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868 (2005). This study provides the crystal structure of the SARS-CoV RBD bound to ACE2, illuminating an interface shared by SARS-CoV-2.

    CAS  PubMed  Google Scholar 

  • Wells, H. L. et al. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. Virus Evol. 7, veab007 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, P. et al. Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell https://doi.org/10.1016/j.cell.2021.07.025 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 369, 1010–1014 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437–442 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

    CAS  PubMed  Google Scholar 

  • Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walls, A. C. et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl Acad. Sci. USA 114, 11157–11162 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, X., Cao, D., Kong, L. & Zhang, X. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein. Nat. Commun. 11, 3618 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Turner, A. J. & Hooper, N. M. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol. Sci. 23, 177–183 (2002).

    CAS  PubMed  Google Scholar 

  • Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 87, E1–E9 (2000).

    CAS  PubMed  Google Scholar 

  • Crackower, M. A. et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417, 822–828 (2002).

    CAS  PubMed  Google Scholar 

  • Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000).

    CAS  PubMed  Google Scholar 

  • Lu, G. et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500, 227–231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeager, C. L. et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420–422 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raj, V. S. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251–254 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W. et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24, 1634–1643 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuba, K. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11, 875–879 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, T. et al. Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe 28, 867–879 e865 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, T. et al. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nat. Struct. Mol. Biol. 28, 202–209 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song, W., Gui, M., Wang, X. & Xiang, Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 14, e1007236 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Hou, Y. J. et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429–446 (2020). This study shows that SARS-CoV-2 infection levels in COVID-19 autopsied lungs corresponds to a gradient of ACE2 expression in the upper and lower airways.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sungnak, W. et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 26, 681–687 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. et al. A comprehensive investigation of the mRNA and protein level of ACE2, the putative receptor of SARS-CoV-2, in human tissues and blood cells. Int. J. Med. Sci. 17, 1522–1531 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, X. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 14, 185–192 (2020).

    PubMed  Google Scholar 

  • Ahn, J. H. et al. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in early stage of COVID-19. J. Clin. Invest. https://doi.org/10.1172/JCI148517 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, I. T. et al. ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs. Nat. Commun. https://doi.org/10.1038/s41467-020-19145-6 (2020). This histological study of human donor tissues clarifies ACE2 tissue distribution and establishes that antihypertensive drugs do not potentiate SARS-CoV-2 infection.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, M. H. et al. Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice - a renoprotective combination? Hypertension 43, 1120–1125 (2004).

    CAS  PubMed  Google Scholar 

  • Lindner, D. et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 5, 1281–1285 (2020).

    PubMed  Google Scholar 

  • Zhuang, M.-W. et al. Increasing host cellular receptor-angiotensin-converting enzyme 2 expression by coronavirus may facilitate 2019-nCoV (or SARS-CoV-2) infection. J. Med. Virol. 92, 2693–2701 (2020).

    CAS  PubMed  Google Scholar 

  • Smith, J. C. et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev. Cell 53, 514–529 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler, C. G. K. et al. SARS-CoV-2 receptor ACE2 Is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181, 1016–1035 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onabajo, O. O. et al. Interferons and viruses induce a novel truncated ACE2 isoform and not the full-length SARS-CoV-2 receptor. Nat. Genet. 52, 1283–1293 (2020).

    CAS  PubMed  Google Scholar 

  • Baker, S. A., Kwok, S., Berry, G. J. & Montine, T. J. Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation. PLoS ONE 16, e0247060 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat. Med. 27, 546–559 (2021).

    CAS  PubMed  Google Scholar 

  • Chen, J. et al. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell https://doi.org/10.1111/acel.13168 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Patanavanich, R. & Glantz, S. A. Smoking is associated with COVID-19 progression: a meta-analysis. Nicotine Tob. Res. 22, 1653–1656 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Q. et al. The impact of COPD and smoking history on the severity of COVID-19: a systemic review and meta-analysis. J. Med. Virol. 92, 1915–1921 (2020).

    CAS  PubMed  Google Scholar 

  • Jacobs, M. et al. Increased expression of ACE2, the SARS-CoV-2 entry receptor, in alveolar and bronchial epithelium of smokers and COPD subjects. Eur. Respir. J. https://doi.org/10.1183/13993003.02378-2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Leung, J. M. et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur. Respir. J. https://doi.org/10.1183/13993003.00688-2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossato, M. et al. Current smoking is not associated with COVID-19. Eur. Respir. J. https://doi.org/10.1183/13993003.01290-2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Williamson, E. J. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 584, 430–436 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, M. C. et al. COVID-19-related genes in sputum cells in asthma. Relationship to demographic features and corticosteroids. Am. J. Respir. Crit. Care Med. 202, 83–90 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furuhashi, M. et al. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. Am. J. Hypertens. 28, 15–21 (2015).

    CAS  PubMed  Google Scholar 

  • Fang, L., Karakiulakis, G. & Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 8, e21 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, A. B. & Verma, A. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence? JAMA 323, 1769–1770 (2020).

    CAS  PubMed  Google Scholar 

  • Mancia, G., Rea, F., Ludergnani, M., Apolone, G. & Corrao, G. Renin-angiotensin-aldosterone system blockers and the risk of Covid-19. N. Engl. J. Med. 382, 2431–2440 (2020).

    CAS  PubMed  Google Scholar 

  • Reynolds, H. R. et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N. Engl. J. Med. 382, 2441–2448 (2020).

    CAS  PubMed  Google Scholar 

  • Mou, H. et al. Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathog. 17, e1009501 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

    CAS  PubMed  Google Scholar 

  • Lam, T. T. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).

    CAS  PubMed  Google Scholar 

  • Liu, P. et al. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog. 16, e1008421 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).

    CAS  PubMed  Google Scholar 

  • Peiris, J. S., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nat. Med. 10, S88–S97 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203 e2193 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, H. et al. ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01407-1 (2021).

    Article  PubMed  Google Scholar 

  • Liu, Y. et al. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2025373118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffers, S. A. et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA 101, 15748–15753 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Z. Y. et al. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 78, 5642–5650 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amraie, R. et al. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. ACS Cent. Sci. https://doi.org/10.1021/acscentsci.0c01537 (2021).

    Article  Google Scholar 

  • Khoo, U. S., Chan, K. Y., Chan, V. S. & Lin, C. L. DC-SIGN and L-SIGN: the SIGNs for infection. J. Mol. Med. 86, 861–874 (2008).

    CAS  PubMed  Google Scholar 

  • Geijtenbeek, T. B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).

    CAS  PubMed  Google Scholar 

  • Ichimura, T. et al. KIM-1/TIM-1 is a receptor for SARS-CoV-2 in lung and kidney. Preprint at medRxiv https://doi.org/10.1101/2020.09.16.20190694 (2020).

    Article  Google Scholar 

  • Wang, S. et al. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 31, 126–140 (2021).

    CAS  PubMed  Google Scholar 

  • Amara, A. & Mercer, J. Viral apoptotic mimicry. Nat. Rev. Microbiol. 13, 461–469 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jemielity, S. et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9, e1003232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richard, A. S. et al. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc. Natl Acad. Sci. USA 114, 2024–2029 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marzi, A. et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J. Virol. 78, 12090–12095 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z. et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J. Infect. Dis. 191, 755–760 (2005).

    CAS  PubMed  Google Scholar 

  • Wang, K. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal. Transduct. Target. Ther. 5, 283 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, L. B. et al. Insights on SARS-CoV-2 molecular interactions with the renin-angiotensin system. Front. Cell Dev. Biol. 8, 559841 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Shilts, J., Crozier, T. W. M., Greenwood, E. J. D., Lehner, P. J. & Wright, G. J. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci. Rep. 11, 413 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370, 861–865 (2020).

    CAS  PubMed  Google Scholar 

  • Zhen-Lu, L. & Matthias, B. Neuropilin-1 assists SARS-CoV-2 infection by stimulating the separation of spike protein domains S1 and S2. Biophys. J. https://doi.org/10.1016/j.bpj.2021.05.026 (2021).

    Article  Google Scholar 

  • Camargo, S. M. et al. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology 136, 872–882 (2009).

    CAS  PubMed  Google Scholar 

  • Belouzard, S., Chu, V. C. & Whittaker, G. R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl Acad. Sci. USA 106, 5871–5876 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L. et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 11, 6013 (2020). This article shows that enhanced infectivity of the SARS-CoV-2 variants harbouring the D614G S protein mutation is due to a reduced level of premature S1 subunit shedding.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock, T. P. et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol. 6, 899–909 (2021). This study demonstrates in ferrets a critical in vivo role for the S protein furin-cleavage site in SARS-CoV-2 infection.

    CAS  PubMed  Google Scholar 

  • Limburg, H. et al. TMPRSS2 is the major activating protease of influenza a virus in primary human airway cells and influenza B virus in human type II pneumocytes. J. Virol. https://doi.org/10.1128/JVI.00649-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, L. W., Mao, H. J., Wu, Y. L., Tanaka, Y. & Zhang, W. TMPRSS2: a potential target for treatment of influenza virus and coronavirus infections. Biochimie 142, 1–10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai, K. et al. TMPRSS2 independency for haemagglutinin cleavage in vivo differentiates influenza B virus from influenza A virus. Sci. Rep. 6, 29430 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo, R. & Bugge, T. H. Type II transmembrane serine proteases in development and disease. Int. J. Biochem. Cell Biol. 40, 1297–1316 (2008).

    CAS  PubMed  Google Scholar 

  • Szabo, R. & Bugge, T. H. Membrane-anchored serine proteases in vertebrate cell and developmental biology. Annu. Rev. Cell Dev. Biol. 27, 213–235 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, F., Qian, S., Zhang, S. & Zhang, Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 526, 135–140 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y. et al. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 202, 756–759 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lukassen, S. et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39, e105114 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laporte, M. & Naesens, L. Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Curr. Opin. Virol. 24, 16–24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ou, T. et al. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 17, e1009212 (2021). This study uses TMPRSS2 and cathepsin L inhibitors to show that SARS-CoV-2 is more dependent than SARS-CoV on TMPRSS2.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozono, S. et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat. Commun. 12, 848 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y. et al. A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nat. Commun. 12, 961 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020). This is the first study to confirm that processing of the SARS-CoV-2 S protein is, like that of the SARS-CoV S protein, mediated by TMPRSS2.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch, B. J., Bartelink, W. & Rottier, P. J. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol. 82, 8887–8890 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert, D. H., Deussing, J., Peters, C. & Dermody, T. S. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast cells. J. Biol. Chem. 277, 24609–24617 (2002).

    CAS  PubMed  Google Scholar 

  • Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. Endosomal proteolysis of the ebola virus glycoprotein is necessary for infection. Science 308, 1643 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaik, M. M. et al. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 565, 318–323 (2019).

    CAS  PubMed  Google Scholar 

  • Campbell, G. R., To, R. K., Hanna, J. & Spector, S. A. SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience 24, 102295 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jangra, S. et al. Sterilizing immunity against SARS-CoV-2 infection in mice by a single-shot and lipid amphiphile imidazoquinoline TLR7/8 agonist-adjuvanted recombinant spike protein vaccine. Angew Chem. Int. Ed. 60, 9467–9473 (2021).

    CAS  Google Scholar 

  • Shi, G. et al. Opposing activities of IFITM proteins in SARS-CoV-2 infection. EMBO J. 40, e106501 (2021).

    CAS  PubMed  Google Scholar 

  • Winstone, H. et al. The polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2. J. Virol. https://doi.org/10.1128/JVI.02422-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaender, S. et al. LY6E impairs coronavirus fusion and confers immune control of viral disease. Nat. Microbiol. 5, 1330–1339 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X. et al. LY6E restricts entry of human coronaviruses, including currently pandemic SARS-CoV-2. J. Virol. https://doi.org/10.1128/JVI.00562-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Brass, A. L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243–1254 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Huang, I. C. et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog. 7, e1001258 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S. Y., Sanchez, D. J., Aliyari, R., Lu, S. & Cheng, G. Systematic identification of type I and type II interferon-induced antiviral factors. Proc. Natl Acad. Sci. USA 109, 4239–4244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J., Liang, C. & Liu, S. L. Interferon-inducible LY6E protein promotes HIV-1 infection. J. Biol. Chem. 292, 4674–4685 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett, B. A. & Cherry, S. Flavivirus internalization is regulated by a size-dependent endocytic pathway. Proc. Natl Acad. Sci. USA 115, 4246–4251 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mar, K. B. et al. LY6E mediates an evolutionarily conserved enhancement of virus infection by targeting a late entry step. Nat. Commun. 9, 3603 (2018).

    PubMed  PubMed Central  Google Scholar 

  • Li, X. et al. Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci. Adv. 6, eabb9153 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boni, M. F. et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nat. Microbiol. 5, 1408–1417 (2020).

    CAS  PubMed  Google Scholar 

  • Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. Z. & Holmes, E. C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 181, 223–227 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).

    CAS  PubMed  Google Scholar 

  • Klimstra, W. B. et al. SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001481 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogando, N. S. et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol. 101, 925–940 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki, M. et al. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog. 17, e1009233 (2021). This article shows that the furin-cleavage site in the SARS-CoV-2 S protein is rapidly lost during virus propagation in vitro, which was subsequently confirmed in multiple studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pohl, M. O. et al. SARS-CoV-2 variants reveal features critical for replication in primary human cells. PLos Biol. https://doi.org/10.1371/journal.pbio.3001006 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mykytyn, A. Z. et al. SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site. eLife https://doi.org/10.7554/eLife.64508 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamers, M. M. et al. Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. eLife 10, e66815 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827 (2020). This epidemiological study is first to raise the alarm about the rapid transmission of SARS-CoV-2 harbouring the D614G mutation in the S protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, C. B., Zhang, L., Farzan, M. & Choe, H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem. Biophys. Res. Commun. 538, 108–115 (2021).

    CAS  PubMed  Google Scholar 

  • Fernández, A. Structural impact of mutation D614G in SARS-CoV-2 spike protein: enhanced infectivity and therapeutic opportunity. ACS Med. Chem. Lett. 11, 1667–1670 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Michaud, W. A., Boland, G. M. & Rabi, S. A. The SARS-CoV-2 spike mutation D614G increases entry fitness across a range of ACE2 levels, directly outcompetes the wild type, and is preferentially incorporated into trimers. Preprint at bioRxiv https://doi.org/10.1101/2020.08.25.267500 (2020).

    Article  Google Scholar 

  • Juraszek, J. et al. Stabilizing the closed SARS-CoV-2 spike trimer. Nat. Commun. 12, 244 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weissman, D. et al. D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29, 23–31 e24 (2021).

    CAS  PubMed  Google Scholar 

  • Yurkovetskiy, L. et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell https://doi.org/10.1016/j.cell.2020.09.032 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Benton, D. J. et al. The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2022586118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, S. K., Li, W., Moore, M. J., Choe, H. & Farzan, M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279, 3197–3201 (2004). This study is the first to identify the SARS-CoV RBD.

    CAS  PubMed  Google Scholar 

  • Liu, H. et al. The basis of a more contagious 501Y.V1 variant of SARS-CoV-2. Cell Res. 31, 720–722 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, F. et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife https://doi.org/10.7554/eLife.69091 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd, M. et al. S-variant SARS-CoV-2 lineage B1.1.7 is associated with significantly higher viral loads in samples tested by ThermoFisher TaqPath RT-qPCR. J. Infect. Dis. https://doi.org/10.1093/infdis/jiab082 (2021).

    Article  PubMed  Google Scholar 

  • Leung, K., Shum, M. H., Leung, G. M., Lam, T. T. & Wu, J. T. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. https://doi.org/10.2807/1560-7917.ES.2020.26.1.2002106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, W. et al. Circulating SARS-CoV-2 variants B.1.1.7, 501Y.V2, and P.1 have gained ability to utilize rat and mouse Ace2 and altered in vitro sensitivity to neutralizing antibodies and ACE2-Ig. Preprint at bioRxiv https://doi.org/10.1101/2021.01.27.428353 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Montagutelli, X. et al. The B1.351 and P.1 variants extend SARS-CoV-2 host range to mice. Preprint at bioRxiv https://doi.org/10.1101/2021.03.18.436013 (2021).

    Article  Google Scholar 

  • Adam, D. What scientists know about new, fast-spreading coronavirus variants. Nature 594, 19–20 (2021).

    PubMed  Google Scholar 

  • Frazier, L. et al. Spike protein cleavage-activation mediated by the SARS-CoV-2 P681R mutation: a case-study from its first appearance in variant of interest (VOI) A.23.1 identified in Uganda. Preprint at bioRxiv https://doi.org/10.1101/2021.06.30.450632 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, M. et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 184, 2384–2393 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, X. et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe https://doi.org/10.1016/j.chom.2021.03.002 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Greaney, A. J. et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29, 463–476 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, P. et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 29, 747–751 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piccoli, L. et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183, 1024–1042 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson, E. C. et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184, 1171–1187 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27, 717–726 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baum, A. et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369, 1014–1018 (2020).

    CAS  PubMed  Google Scholar 

  • Starr, T. N. et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371, 850–854 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andreano, E. et al. SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2103154118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng, X. et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184, 3426–3437 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerutti, G. et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe https://doi.org/10.1016/j.chom.2021.03.005 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lok, S. M. An NTD supersite of attack. Cell Host Microbe 29, 744–746 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum, M. et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184, 2332–2347 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suryadevara, N. et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 184, 2316–2331 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q. et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182, 1284–1294 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife https://doi.org/10.7554/eLife.61312 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham, R. L. & Baric, R. S. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol. 84, 3134–3146 (2010).

    CAS  PubMed  Google Scholar 

  • Frampton, D. et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect. Dis. https://doi.org/10.1016/s1473-3099(21)00170-5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cele, S. et al. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 593, 142–146 (2021).

    CAS  PubMed  Google Scholar 

  • Shen, X. et al. Neutralization of SARS-CoV-2 Variants B.1.429 and B.1.351. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2103740 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 372, 815–821 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vignier, N. et al. Breakthrough Infections of SARS-CoV-2 Gamma variant in fully vaccinated gold miners, French Guiana, 2021. Emerg. Infect. Dis. https://doi.org/10.3201/eid2710.211427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Farinholt, T. et al. Transmission event of SARS-CoV-2 Delta variant reveals multiple vaccine breakthrough infections. Preprint at medRxiv https://doi.org/10.1101/2021.06.28.21258780 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Starr, T. N., Greaney, A. J., Dingens, A. S. & Bloom, J. D. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep. Med. 2, 100255 (2021).

    PubMed  PubMed Central  Google Scholar 

  • Zhou, H. et al. B.1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies. Preprint at bioRxiv https://doi.org/10.1101/2021.03.24.436620 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira, I. et al. SARS-CoV-2 B.1.617 mutations L452 and E484Q are not synergistic for antibody evasion. J. Infect. Dis. https://doi.org/10.1093/infdis/jiab368 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Palacios, R. et al. Double-blind, randomized, placebo-controlled phase III clinical trial to evaluate the efficacy and safety of treating healthcare professionals with the adsorbed COVID-19 (inactivated) vaccine manufactured by Sinovac - PROFISCOV: a structured summary of a study protocol for a randomised controlled trial. Trials 21, 853 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    CAS  PubMed  Google Scholar 

  • Logunov, D. Y. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 397, 671–681 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    CAS  PubMed  Google Scholar 

  • Barrett, J. R. et al. Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. Nat. Med. 27, 279–288 (2021).

    CAS  PubMed  Google Scholar 

  • Ella, R. et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect. Dis. https://doi.org/10.1016/s1473-3099(20)30942-7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercado, N. B. et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 586, 583–588 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keech, C. et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. 383, 2320–2332 (2020).

    CAS  PubMed  Google Scholar 

  • Gosert, R., Kanjanahaluethai, A., Egger, D., Bienz, K. & Baker, S. C. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J. Virol. 76, 3697–3708 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knoops, K. et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 6, e226 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Snijder, E. J. et al. A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis. PLoS Biol. 18, e3000715 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stertz, S. et al. The intracellular sites of early replication and budding of SARS-coronavirus. Virology 361, 304–315 (2007).

    CAS  PubMed  Google Scholar 

  • Wolff, G. et al. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369, 1395–1398 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsmith, C. S. et al. Ultrastructural characterization of SARS coronavirus. Emerg. Infect. Dis. 10, 320–326 (2004).

    PubMed  PubMed Central  Google Scholar 

  • Neuman, B. W. et al. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol. 174, 11–22 (2011).

    CAS  PubMed  Google Scholar 

  • Schoeman, D. & Fielding, B. C. Coronavirus envelope protein: current knowledge. Virol. J. 16, 69 (2019).

    PubMed  PubMed Central  Google Scholar 

  • Beigel, J. H. et al. Remdesivir for the treatment of covid-19 - final report. N. Engl. J. Med. 383, 1813–1826 (2020).

    CAS  PubMed  Google Scholar 

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04321096 (2021).

  • Wang, P. G., Tang, D. J., Hua, Z., Wang, Z. & An, J. Sunitinib reduces the infection of SARS-CoV, MERS-CoV and SARS-CoV-2 partially by inhibiting AP2M1 phosphorylation. Cell Discov. 6, 71 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q. et al. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discov. 6, 80 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Q. et al. Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration. eLife https://doi.org/10.7554/eLife.61552 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Yu, D., Yan, H., Chong, H. & He, Y. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J. Virol. 94, https://doi.org/10.1128/JVI.00635-20 (2020).

  • Xiu, S. et al. Inhibitors of SARS-CoV-2 entry: current and future opportunities. J. Med. Chem. 63, 12256–12274 (2020).

    CAS  PubMed  Google Scholar 

  • Salazar, E. et al. Treatment of coronavirus disease 2019 patients with convalescent plasma reveals a signal of significantly decreased mortality. Am. J. Pathol. 190, 2290–2303 (2020).

    CAS  PubMed  Google Scholar 

  • Libster, R. et al. Early high-titer plasma therapy to prevent severe Covid-19 in older adults. N. Engl. J. Med. 384, 610–618 (2021).

    CAS  PubMed  Google Scholar 

  • Li, L. et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 324, 460–470 (2020).

    CAS  PubMed  Google Scholar 

  • Liu, S. T. H. et al. Convalescent plasma treatment of severe COVID-19: a propensity score-matched control study. Nat. Med. 26, 1708–1713 (2020).

    CAS  PubMed  Google Scholar 

  • Simonovich, V. A. et al. A randomized trial of convalescent plasma in Covid-19 severe pneumonia. N. Engl. J. Med. 384, 619–629 (2021).

    CAS  PubMed  Google Scholar 

  • Joyner, M. J. et al. Convalescent plasma antibody levels and the risk of death from Covid-19. N. Engl. J. Med. 384, 1015–1027 (2021).

    CAS  PubMed  Google Scholar 

  • Wang, C. et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11, 2251 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, Z. et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 369, 1505–1509 (2020).

    CAS  PubMed  Google Scholar 

  • Koenig, P.-A. et al. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science 371, eabe6230 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoof, M. et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive spike. Science 370, 1473–1479 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahase, E. Covid-19: FDA authorises neutralising antibody bamlanivimab for non-admitted patients. BMJ 371, m4362 (2020).

    PubMed  Google Scholar 

  • Gottlieb, R. L. et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 325, 632–644 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhimraj, A. et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19 (Infectious Diseases Society of America, 2021).

  • Chen, Y. et al. ACE2-targeting monoclonal antibody as a “pan” coronavirus blocker in vitro and in a mouse model. Preprint at bioRxiv https://doi.org/10.1101/2020.11.11.375972 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tada, T. et al. An ACE2 microbody containing a single immunoglobulin Fc domain is a potent inhibitor of SARS-CoV-2. Cell Rep. 33, 108528 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monteil, V. et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905–913 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sims, J. J. et al. Intranasal gene therapy to prevent infection by SARS-CoV-2 variants. PLoS Pathog. 17, e1009544 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari, M. et al. Characterisation of a novel ACE2-based therapeutic with enhanced rather than reduced activity against SARS-CoV-2 variants. J. Virol. https://doi.org/10.1128/JVI.00685-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Haschke, M. et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin. Pharmacokinet. 52, 783–792 (2013).

    CAS  PubMed  Google Scholar 

  • Khan, A. et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit. Care https://doi.org/10.1186/s13054-017-1823-x (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimer, J. M. et al. Matrix-M adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS ONE 7, e41451 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, N. A. C., Kester, K. E., Casimiro, D., Gurunathan, S. & DeRosa, F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines https://doi.org/10.1038/s41541-020-0159-8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Which of the following indicates where testosterone enters a cell and why it is able to cross at that point?

    Testosterone is a small steroid hormone that is important in cell signaling. Which of the following indicates where testosterone enters a cell and why it is able to cross at that point? 1, because testosterone is nonpolar and can diffuse through the membrane.

    Which cell is likely to be most effective in the exchange of materials?

    The cell most likely to exchange materials with its environment at the slowest rate is the one with the lowest surface area to volume ratio, meaning that it has the smallest amount of membrane with respect to is volume.

    Which of the following best predicts the effect of not having available ATP to supply energy to this process?

    Which of the following best predicts the effect of not having ATP available to supply energy to this process? H+ ions will stop moving through the protein.

    What component of the cell membrane is responsible for active transport?

    For the most part, carrier proteins mediate active transport while channel proteins mediate passive transport. Carrier proteins create an opening in the lipid bilayer by undergoing a conformational change upon the binding of the molecule. Channel proteins form hydrophilic pores across the lipid bilayer.