Hàm số lượng giác và phương trình lượng giác cơ bản

Trong bài viết này, chúng tôi sẽ chia sẻ lý thuyết và các dạng bài tập về phương trình lượng giác cơ bản giúp các ôn lại kiến thức để chuẩn bị hành trang thật kỹ cho các kỳ thi đạt kết qua cao nhé

Lý thuyết phương trình lượng giác cơ bản thường gặp

1. Phương trình sin x = sin α, sin x = a (1)

Nếu |a|>1 thì phương trình vô nghiệm.

Nếu |a|≤1 thì chọn cung α sao cho sinα=a. Khi đó (1)

Hàm số lượng giác và phương trình lượng giác cơ bản

Các trường hợp đặc biệt:

sin x = 0 ⇔ x = kπ (k ∈ Z)

sin x =1 ⇔ x = π/2 + k2π (k ∈ Z)

sin x = -1 ⇔ x = -π/2 + k2π (k ∈ Z)

sin x = ±1 ⇔ sin2x = 1 ⇔ cos2x = 0 ⇔ cosx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

2. Phương trình cos x = cos α, cos x = a (2)

Nếu |a|>1 thì phương trình vô nghiệm.

Nếu |a|≤1 thì chọn cung α sao cho cosα = a.

Khi đó (2) ⇔ cosx = cosα ⇔ x = ± α + k2π (k ∈ Z)

b. cosx = a điều kiện -1 ≤ a ≤ 1

cosx = a ⇔ x = ± arccosa + k2π (k ∈ Z)

c. cosu = cosv ⇔ cosu = cos( π – v)

d. cosu = sinv ⇔ cosu = cos(π/2 – v)

e. cosu = – sinv ⇔ cosu = cos(π/2 + v)

Các trường hợp đặc biệt:

Hàm số lượng giác và phương trình lượng giác cơ bản

3. Phương trình tan x = tan α, tan x = a (3)

Chọn cung α sao cho tanα = a. Khi đó (3)

Hàm số lượng giác và phương trình lượng giác cơ bản

Các trường hợp đặc biệt:

tanx = 0 ⇔ x = kπ (k ∈ Z)

tanx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

4. Phương trình cot x = cot α, cot x = a (4)

Chọn cung α sao cho cotα = a.

Khi đó (3) cotx = cotα ⇔ x = α + kπ (k ∈ Z)

cotx = a ⇔ x = arccota + kπ (k ∈ Z)

Các trường hợp đặc biệt:

cotx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

cotx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

5. Phương trình bậc nhất đối với một hàm số lượng giác

Dạng asinx + b; acosx + b = 0; atanx + b = 0; acotx+ b = 0 (a, b ∈ Ζ, a ≠ 0)

Cách giải:

Đưa về phương trình cơ bản, ví dụ asinx + b = 0 ⇔ sinx = -b/a

Tham khảo thêm:

6. Phương trình bậc hai đối với một hàm số lượng giác

Dạng asin2x + bsinx + c = 0 (a, b ∈ Ζ, a ≠ 0)

Phương pháp

Đặt ẩn phụ t, rồi giải phương trình bậc hai đối với t.

Ví dụ: Giải phương trình asin2x + bsinx + c = 0

Đặt t = sinx (-1≤ t ≤1) ta có phương trình at2 + bt + c = 0

Lưu ý khi đặt t = sinx hoặc t = cosx thì phải có điều kiện -1≤t ≤1

7. Một số điều cần chú ý:

a) Khi giải phương trình có chứa các hàm số tang, cotang, có mẫu số hoặc chứa căn bậc chẵn, thì nhất thiết phải đặt điều kiện để phương trình xác định

Hàm số lượng giác và phương trình lượng giác cơ bản

b) Khi tìm được nghiệm phải kiểm tra điều kiện. Ta thường dùng một trong các cách sau để kiểm tra điều kiện:

c) Sử dụng MTCT để thử lại các đáp án trắc nghiệm

Các dạng bài tập về phương trình lượng giác

Dạng 1: Giải phương trình lượng giác cơ bản

Phương pháp: Dùng các công thức nghiệm tương ứng với mỗi phương trình

Ví dụ 1: Giải các phương trình lượng giác sau:

a) sinx = sin(π/6). c) tanx – 1 = 0

b) 2cosx = 1. d) cotx = tan2x.

Lời giải

a) sin⁡x = sin⁡π/6

Hàm số lượng giác và phương trình lượng giác cơ bản

b) 2cosx = 1 ⇔ cosx = ½ ⇔ x = ± π/3 + k2π (k ∈ Z)

c) tan⁡x = 1 ⇔ cos⁡x = π/4 + kπ (k ∈ Z)

d) cot⁡x = tan⁡2x

⇔cotx = cot(π/2 – 2x)

⇔ x = π/2 – 2x + kπ

⇔ x = π/6 + kπ/3 (k ∈ Z)

Ví dụ 2: Giải các phương trình lượng giác sau:

a) cos2 x – sin2x =0.

b) 2sin(2x – 40º) = √3

Lời giải

a) cos2x – sin2x=0 ⇔ cos2x – 2sin⁡x.cos⁡x = 0

⇔ cos⁡x (cos⁡x – 2sin⁡x )=0

Hàm số lượng giác và phương trình lượng giác cơ bản

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

Hàm số lượng giác và phương trình lượng giác cơ bản

Ví dụ 3: Giải các phương trình sau: (√3-1)sinx = 2sin2x.

Hàm số lượng giác và phương trình lượng giác cơ bản

Dạng 2: Phương trình bậc nhất có một hàm lượng giác

Phương pháp: Đưa về phương trình cơ bản, ví dụ asinx + b = 0 ⇔ sinx = -b/a

Ví dụ: Giải phương trình sau:

Hàm số lượng giác và phương trình lượng giác cơ bản

Dạng 3: Phương trình bậc hai có một hàm lượng giác

Phương pháp

Phương trình bậc hai đối với một hàm số lượng giác là phương trình có dạng :

a.f2(x) + b.f(x) + c = 0 với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).

Cách giải:

Đặt t = f(x) ta có phương trình : at2 + bt +c = 0

Giải phương trình này ta tìm được t, từ đó tìm được x

Khi đặt t = sinu(x) hoặc t = cosu(x), ta có điều kiện: -1 ≤ t ≤ 1

Ví dụ: sin2x +2sinx – 3 = 0

Hàm số lượng giác và phương trình lượng giác cơ bản

Ví dụ 2: 1 + sin2x + cosx + sinx = 0

Lời giải:

⇔ 1 + 2 sin⁡x cos⁡x + 2(cos⁡x+sin⁡x ) = 0

⇔ cos2⁡x + sin2⁡x + 2 sin⁡xcos⁡x + 2 (cos⁡x+sin⁡x )=0

⇔ (sin⁡x + cos⁡x)2 + 2 (cos⁡x+sin⁡x )=0

Hàm số lượng giác và phương trình lượng giác cơ bản

Dạng 4: Phương trình bậc nhất theo sinx và cosx

Xét phương trình asinx + bcosx = c (1) với a, b là các số thực khác 0.

Hàm số lượng giác và phương trình lượng giác cơ bản

Hàm số lượng giác và phương trình lượng giác cơ bản

Ví dụ: Giải phương trình sau: cos2x – sin2x = 0.

Hàm số lượng giác và phương trình lượng giác cơ bản

Dạng 5: Phương trình lượng giác đối xứng, phản đối xứng

Phương pháp

Phương trình đối xứng là phương trình có dạng:

a(sinx + cosx) + bsinxcosx + c = 0 (3)

Phương pháp giải:

Để giải phương trình trên ta sử dụng phép đặt ẩn phụ:

Hàm số lượng giác và phương trình lượng giác cơ bản

Thay vào (3) ta được phương trình bậc hai theo t.

Ngoài ra chúng ta còn gặp phương trình phản đối xứng có dạng:

a(sinx – cosx) + bsinxcosx + c = 0 (4)

Để giải phương trình này ta cũng đặt

Hàm số lượng giác và phương trình lượng giác cơ bản

Thay vào (4) ta có được phương trình bậc hai theo t.

Ví dụ 1: Giải phương trình sau: 2(sinx + cosx) + 3sin2x = 2.

Hàm số lượng giác và phương trình lượng giác cơ bản

Hy vọng với những kiến thức mà chúng tôi vừa chia sẻ có thể giúp các bạn hệ thống lại kiến thức về phương trình lượng giác cơ bản từ đó áp dụng vào làm bài tập nhanh chóng và chính xác nhé

5/5 - (1 bình chọn)

XEM THÊM

Đường trung bình của tam giác, hình thang chi tiết từ A – Z [VD minh họa]